FCAL energy calibration

Igal Jaeglé

Thomas Jefferson National Accelerator Facility

for the GlueX and PrimEX-D experiments

30.04.2020

Table of contents

Introduction

- PCAL gain calibration
- 3 Energy dependence correction
- Intersection (Intersection) [Intersection]
 Intersection [Intersection]

Introduction

PRIMEXD or η decay width measurements via the Primakoff process is measured by FCAL

 $\gamma^4 He \rightarrow \eta (\rightarrow \gamma \gamma)^4 He$ • PDG average: $\Gamma(\eta \rightarrow \gamma \gamma) = 0.51 \ keV \pm 0.018 \ keV$

PRIMEXD expected precision for decay width: 3.2 %

• Require 1% energy calibration precision for all η momenta and polar angles (below 7°)

- Implementation of a "new" calibration procedure for data and simulation
 - Find bad channels for each run and determined if can still be used or removed in clustering (Chandra)
 - Gains calibration done without energy dependence correction applied
 - Energy dependence correction per ring

PRIMEXD runs

No magnetic field but some runs have CDC and/or FDC turn on

- New π^0 skim/plugin that includes TOF, trigger bit, and tagged photon-beam
- New macros developped with enhanced visualization => e.g. square 10, first batch of 16 channels

ijaegle@jlab.org (JLab)

FCAL gains calibration

Of all channels

• Ilya's method for outer rings: distribution expected to peak around 100 MeV/ c^2 => e.g. square 26, first batch of 16 channels

- Fit function: Gaus + pol3 or 5
- Results accepted if $\chi^2 \leq 8$
 - If bad channels gain set to 1

Gain definition

New gain = old gain $\times \frac{\pi^0 \text{ PDG mass}}{\text{Fitted mean}}$

Quality assurance

- Fitted π^0 mean within \pm 1 % of the PDG mass (101 MeV/ c^2 for outer rings) for all channels
- PRIMEXD phase I divided into 7 periods

Quality check

Without energy dependence correction applied

ijaegle@jlab.org (JLab)

Energy dependence correction

Per "ring" for all physics runs combined, cell with max. energy face radius divided by 5 cm

Energy dependence correction applied

First iteration

Second iteration

ijaegle@jlab.org (JLab)

Inner ring (1) low momentum photon

ijaegle@jlab.org (JLab)

Inner ring (1) high momentum photon

Inner ring (2) low momentum photon

ijaegle@jlab.org (JLab)

Inner ring (2) high momentum photon

Middle ring (15) low momentum photon

ijaegle@jlab.org (JLab)

Middle ring (15) high momentum photon

ijaegle@jlab.org (JLab)

Outer ring (22) low momentum photon

ijaegle@jlab.org (JLab)

Outer ring (22) high momentum photon

Outer ring (22) low momentum photon for 2γ only

ijaegle@jlab.org (JLab)

Outer ring (22) high momentum photon for 2γ only

Energy dependence correction applied

When only two photons detected

Second iteration

- For ring 2 to 21, procedure is working fairly well bias below 0.2% level
- For ring 1 and 22(23) some improvements are needed

ijaegle@jlab.org (JLab)

Distance between two clusters

Select events with di-photon invariant mass between 110 and 160 ${
m MeV}/c^2$

For up to 12 photons

For two photons only

Energy dependence correction for MC simulation

Previous method used only one correction for all rings

- $\bullet\,$ Correction is determined for the fiducial radius between $\,$ 20 and $\,$ 100 cm i.e. is ok for 8 rings (${\sim}40\%$ of FCAL)
- Determined with Geant4 before the fudge factor correction (JeffersonLab/HDGeant4#146)
- To be comparable to data a "gain" calibration has to be performed first
- No correction applied

New energy dependence correction applied

To MC simulation

After 1st iteration

After 2nd iteration

New energy dependence correction applied

To MC simulation

After 3rd iteration

After 4th iteration

New energy dependence correction applied

To MC simulation

After 5th iteration

After 6th iteration

Changes in the software

By default same behavior as before only if:

- Parameters in shower_calib_piecewise set to C = 2 and A=B=D=E=0
- If energy_dependence_correction_vs_ring exists is the new correction applied

```
Egamma = 0:
Ecutoff = cutoff energy:
A = linfit slope;
B = linfit intercept;
C = expfit param1:
D = expfit param2:
E = expfit param3:
if ( Eclust <= Ecutoff ) {
 Egamma = Eclust / (A * Eclust + B):
 if ( Eclust > Ecutoff ) {
   Egamma = Eclust / (C - exp(-D * Eclust + E));
if (C == 2 && D == 0 && E == 0 && energy dependence correction vs ring.size() > 0 && ring nb < 24) {
  Edamma = 0:
  A = energy dependence correction vs ring[ring nb][0]:
 B = energy dependence correction vs ring[ring nb][1];
 C = energy dependence correction vs ring[ring nb][2];
 D = energy dependence correction vs ring[ring nb][3];
  E = energy dependence correction vs ring[ring nb][4]:
  F = energy dependence correction vs ring[ring nb][5]:
  Egamma = Eclust / (A + B * Eclust + C * pow(Eclust, 2) + D * pow(Eclust, 3) + E * pow(Eclust, 4) + F * pow(Eclust, 5));
```

ijaegle@jlab.org (JLab)

Conclusion

• New gains (but can still be improved)

Target	Table number	Preliminary run range
Be	1	61321-61354
He	2	61355-61481
He	3	61482-61622
He	4	61623-61788
He	5	61789-61910
He	6	61911-61944
He	7	61945-61956

- New energy dependence correction per rings for data and simulation (but can still be improved)
- QC, good enough for a 1st draft

To-do-list:

- Push request?
- Write a note
- Monitoring launch