Mirror Updates

07/30/15

Reflectivity Measurements

- Find maximum value in x or y projection plane
- Scale background so integrals of signal and background histograms more than 120 pixels away from max agree
- Approximate size of spot
- Subtract background from signal inside this window

Intensity in given y column

Intensity in given x column

Measured Reflectivity of Glass Mirror

Reflectivity of Aluminum Mirrors

Notes

- The " 430 nm " is really a purple LED, and may in fact be red dominated
- The 305 nm seems to have strange behavior on both the Aluminum and the glass - perhaps it has a component not at 305 nm which is dominating
- The other measurements match pretty well the expected reflectivity of the glass at 14 degrees
- The 45 degree reflection is stronger at lower wavelengths

Aluminum Mirrors

- Lapped mirror appears cloudy, and a dispersion is visible to the eye
- Seems to be too wide to be captured in the camera and translated to a reduced reflectivity
- Neither finish has an acceptable level of reflectivity (even in the visible).

Dispersion of the mirrors

- The next slides show the images of the source (a 1 mm circle) along with a square approximating the equivalent a $6 \times 6 \mathrm{~mm}$ pixel taken 64 cm from that point
- Approximately the distance of most of our photons
- The dispersion is too small to reasonably measure, but shouldn't affect us

Polished Aluminum, blue, 9 ms , 45 degrees

Glass with Enhanced UV coating, blue, 9ms, 45 degrees

Glass with Enhanced UV coating, blue, 9ms, 14 degrees (Taken at 50 cm instead of 64 cm)

Glue submersion test

- Glued mirror to Aluminum
- Measured thickness around border of glas, Al base, and whole assembly
- Going under water

