Dispersive analysis of the $\gamma^* \gamma^* \to \pi \pi$ process

Igor Danilkin^a, Oleksandra Deineka^a, Marc Vanderhaeghen^a

^aInstitut für Kernphysik & PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany

Abstract

In this paper, we present a dispersive analysis of the double-virtual photon-photon scattering to two pions up to 1.5 GeV. Through unitarity, this process is very sensitive to hadronic final state interaction. For the *s*-wave, we use a coupled-channel $\pi\pi$, $K\bar{K}$ analysis which allows a simultaneous description of both $f_0(500)$ and $f_0(980)$ resonances. For higher energies, $f_2(1270)$ shows up as a dominant structure which we approximate by a single channel $\pi\pi$ rescattering in the *d*-wave. In the dispersive approach, the latter requires taking into account *t*- and *u*-channel vector-meson exchange left-hand cuts which exhibit an anomalous-like behavior for large space-like virtualities. In our paper, we show how to readily incorporate such behavior using a contour deformation. Besides, we devote special attention to kinematic constraints of helicity amplitudes and show their correlations explicitly.

arXiv:1909:04158v1[hep-ph]

Hadronic corrections to muon g-2

- Hadronic vacuum polarization: constrained by measurements of $e^+e^- \rightarrow hadrons$, measurements to be done BESIII and BELLE-II.
- Hadronic light-by-light processes:
 - 1. $\gamma^* \gamma^* \to \pi^0$. Constraints from VMD models, and experiment
 - 2. $\gamma^* \gamma^* \rightarrow \pi \pi$. Few experimental constraints
- Virtuality is important in HLBL.

Danilkin et al. calculation of $\gamma^* \gamma^* \rightarrow \pi \pi$

- s-wave: coupled channels analysis of $\pi\pi$ and $K\bar{K}$ final states provides simultaneous description of $f_0(500)$ and $f_0(1980)$
- d-wave: single channel $\pi\pi$ rescattering to describe $f_2(1270)$
- No treatment of the polarizabilities: Born amplitudes are evaluated, leading order polarizability terms could be calculated

Figure 2: Total cross sections for $\gamma \gamma \rightarrow \pi^+ \pi^- (|\cos \theta| < 0.6)$ (upper curve) and $\gamma \gamma \rightarrow \pi^0 \pi^0 (|\cos \theta| < 0.8)$ (lower curve). The Born result is shown by dashed gray curves. The data are taken from [35].

Figure 3: Predictions for σ_{TT} , σ_{TL} , σ_{LL} cross sections for $\gamma^*\gamma^* \rightarrow \pi^+\pi^-$ (left panels) and $\gamma^*\gamma^* \rightarrow \pi^0\pi^0$ (right panels) for $Q_1^2 = 0.5 \text{ GeV}^2$ and $Q_2^2 = 0.25, 0.5, 0.75, 1.0 \text{ GeV}^2$ and for full angular coverage $|\cos \theta| \le 1$. The Born results are shown by dotted curves.

Papers on $\gamma\gamma \rightarrow \pi\pi$

Pasquini, Drechsel, Scherer, "Polarizability of the pion: no conflict between dispersion theory and chiral perturbation theory". 2008

Dai and Pennington, "Pion polarizabilities from a $\gamma\gamma \rightarrow \pi\pi$ analysis". 2016

Danilkin, Deineka, Vanderhaeghen, "Dispersive analysis of the $\gamma^* \gamma^* \rightarrow \pi \pi$ process". 2019