MWPC Construction

Wire Stringing

- Threaded rod is usually manufactured by "rolling", circular stock is rotated through a die that cuts the threads. Acme threads have the best tolerances, about +/- 9 mil/foot.
- The other process is to grind the threads, cutting away metal. Can achieve accuracies of a few mil over 10's of feet. Haven't found any company willing to grind a threaded rod for us.

Wire stringing with Acme rod: measured thread precision is about 10 mil over 6 ft

- Because Acme threads have a flat bottom, they're not the best threaded rod to use for wire placement.
- McMaster-Carr sells a class 3 threaded rod that's rolled, with a vgroove. We've ordered this rod and will measure the thread accuracy over 6'

Next Steps:

\checkmark 1. Complete attachment of the HV capacitors onto the amplifier boards (waiting for Bobby to return)
2. Attach preamp boards to bottom aluminum plate
3. Finish machining O-ring groove into G10 slats (Rick in machine shop)
4. Attach G 10 slats to top aluminum plate
5. Move completed top plate into clean room
6. Make brackets to hold threaded rod for wire stringing
7. String wires
8. Close detector
9. Flip the detector top side down, complete electronics hookup
10. Flow gas, test with HV

Using TOF for Triggering

TOF rates with solenoid on, 3.4 mm collimator

Lognumber 3393177. Submitted by elton on Tue, 03/29/2016-08:28.
Logbooks: HDLOG HDTOF
References: 3392794 - TOF rates with solenoid off
Nominal running with amorphous radiator, 3.4 mm collimator, 200 nA beam
TOF scaler rates are about 1 MHz . We need to check the threshold and compare to trigger thresholds.

Minimal trigger condition: $\mathbf{4}$ bars hit, exclude central bars 22 to 23	Background Trigger Rate
No additional requirement	23 kHz
18 cm minimum separation between hits	21 kHz
$\cos \theta<-0.7$	7.0 kHz
All the above	7.0 kHz
$\cos \theta<-0.4$	8.5 kHz
$\cos \theta<0.0$	12.5 kHz
$-0.9<\cos \theta<0.0$	7.5 kHz

Next step is to calculate the trigger efficiency for Primakoff and $\mu^{+} \mu^{-}$pairs using the above cuts:

1. Use xy coordinates at the TOF to find the paddles hit.
2. Calculate (i) separation distance and (ii) opening angle of hits relative to beam axis using paddle positions
3. Calculate trigger efficiency for Primakoff and $\mu^{+} \mu^{-}$pairs
