A look at backgrounds coming from bggen

*Work at ASU is supported by the U.S. National Science Foundation

Michael Dugger

The MC data

- Turned on all decays within bggen except for $\pi^+ \pi^-$ and K^0_L
- Generated one million bggen events from $E_{\gamma} = 8.5$ to 9.0 GeV
- Processed the bggen events through HDParaSim (from release-2009-02-24)
- Modified the invariant_mass_hists plugin to obtain plots

Type of events coming out of bggen

NOTE: concentrating on final states that contain a proton.

Two main types of proton events from bggen:

- Light vector meson + proton (i.e. $\rho^0 p$, ωp , φp)
- quark + diquark + \overline{quark} + quark \rightarrow hadrons

Example: $d + (uu)_1 + \overline{d} + d \rightarrow$ string fragmentation + cluster fragmentation \rightarrow $\Delta^{++} K^* (892)^0 K^* (892)^-$

Mass *X* from $\gamma p \rightarrow p X$

• Vector mesons are clearly visible

• The rest of the background is comprised of a nearly random-looking selection of hadrons

Mass X from $\gamma p \rightarrow p X$ with charged π requirements

Mass Y vs. Mass X

• It will be difficult to distinguish between ρ and ω using missing mass of *Y*

• The $\varphi \rightarrow K^0_{\ L} K^0_{\ s}$ should be easy to find using missing mass of *Y*

Efficiency of detecting $\gamma p \rightarrow p \ \varphi \rightarrow p \ \pi^+ \ \pi^- K^0_L$ using simple cuts

- Clean signal
- Efficiency = 55.3%

Mass Y vs. Mass X

• Projected from mass X = 0.7 to 0.85 GeV onto the mass Y axis

• Can't distinguish between mass Y = 0 and mass $Y = mass \pi^0$

Mass of 2 photons vs. Mass *X* from $\gamma p \rightarrow p X$

• Took projection: GeV <Mass X< 2.0 GeV onto mass 2 photon axis

• Obtain reconstructed π^0 and η as shown

Efficiency of detecting $\gamma p \rightarrow p \varphi \rightarrow p \pi^+ \pi^- \pi^0 \text{ AND } \gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$ using simple cuts

• Can't distinguish between mass Y = 0and mass $Y = mass \pi^0$ (as expected)

• ρ^0 contamination no longer a concern

- Efficiency for ω = 30.3%
- Efficiency for φ = 37.3%

Mass *X* from $\gamma p \rightarrow p X$ with $K^+ K^-$ required

If the kaons can be reliably identified,
the φ is a super clean signal

• Efficiency for $\gamma p \rightarrow p \ \varphi \rightarrow K^+ K^-$ = 33.9%

Summary and future work

• The light vector mesons should be able to be easily measured using simple cuts

• In the near future, will study reactions with 3 charged pions in the final state.

