BCAL Split-off Update

David Lawrence, JLab March 29, 2010

Reconstructed clusters

- \circ Two sets of single particle events were simulated and reconstructed in the BCAL (θ =14°-60°).
- All events should ideally have a single shower.

Single photon event w/ multiple clusters

Without trajectory points drawn

With trajectory points drawn

Single pi+ event w/ multiple clusters

Without trajectory points drawn

With trajectory points drawn

Another pi+ event

Reconstructed —					
trk:	type:	p:	theta:	phi:	Z:
1	gamma	0.02943	19.77	1.931	65
2	gamma	0.05763	13.07	2.275	65
3	gamma	0.3662	15.78	2.518	65
4	gamma	0.03067	12.53	6.201	65

Dolby-C method

- o CB Note 199, 28/8/1992 (GlueX-doc-1447)
- Uses energy asymmetry to opening angle correlation to identify likely splitoffs
- $\circ A = (E_1 E_2)/(E_1 + E_2)$
- $\circ \psi$ = opening angle between two "photons" (assuming they came from target vertex)

Figure 1 Plot of $1-A^2$ vs $1-\cos\Psi$ for zeroprong data. Dolby-C interprets entries in the cross-hatched area as being due to splitoffs.

Dolby-C method

- \circ Two sets of single particle events were simulated and reconstructed in the BCAL (θ =14°-60°).
- o All events should ideally have a single shower.
- o Entries in the histograms below require at least 2 clusters.

Summary

- Several extra clusters are being found in BCAL
- Handles appear to be available to pare down:
 - Number of blocks/cluster
 - Connection to interior of calorimeter
- More algorithms developed at Crystal Barrel that may still be tried:
 - Kinematic Fit (a'la CBDROP)
 - "Showermass" (a'la SMART)