Project #	Project	Number needed	Number completed	Project finished
1	Epoxy G10 slats to wire plates	8	8	~
2	Epoxy G10 slats to spacer plates	8	8	~
3	Sand preamp cards to correct size	48	48	~
4	Sand HV cards to correct size	48	48	~
5	Attach HV capacitors to preamp card, test preamp card	48	48	V
6	Epoxy preamp and HV bias cards to wire plates	8	8	~
7	Bolt together wire and spacer plates, attach wheels, move to Physical Science Building	8	8	~
8	String 10 carbon-tube wires and 11 adjacent field wires in central region, HV test open detector	8	0	
9	String remaining sense and field wires, close detector, flow gas, bias HV and LV, fix problems	8	0	

From the trigger discussion of July 17, 2018

FCAL energy deposition for TOF trigger events

- Almost half the triggers have energies below 100 MeV
- The CSDA range for 100 MeV electrons in iron is approx. 1.5"
- Should we put a 1.5" thick steel plate in front of the TOF covering approximately 60" x 60", the size of the MWPCs ?

Tentative Conclusions

- Trigger rates under 90 kHz are possible if,
 - i. the trigger can reject events with R<18 cm,
 - ii. the TOF scintillators are pulled back 18 cm from the beam hole,
 - iii. the coincidence window between TOF paddles is reduced to 20 ns.
- More trigger tests are needed this fall with a 5% RL target pulled back to z=1 cm.
- We should advocate for the TOF modification next summer.
- A 1.5" thick steel plate in front of the TOF might reduce the rate by 50%. Could do a test this fall on a few paddles if there's time.

Pair production cross sections on proton for GlueX running conditions with track going into TOF

Picking the target(s) for CPP

Primakoff yield per radiation length

Next step:

• Integrate Primakoff and ρ^0 cross sections over a reasonable range in angle, $\pi\pi$ invariant mass, and momentum transfer. Find the Primakoff/ ρ^0 cross section ratio as a function of mass number A.