1 Epoxy G10 slats to wire plates
2 Epoxy G10 slats to spacer plates
3 Sand preamp cards to correct size
4 Sand HV cards to correct size
5 Attach HV capacitors to preamp card, test preamp card

6 Epoxy preamp and HV bias cards to wire plates
$7 \quad$ Bolt together wire and spacer plates, attach wheels, move to Physical Science Building

8 String 10 carbon-tube wires and 11 adjacent field wires in central region, HV test open detector
$9 \quad$ String remaining sense and field wires, close detector, flow gas, bias HV and LV, fix problems

Number Number Project needed completed finished

8

8
48
48
48

8

8

0

0
8
\checkmark

8

From the trigger discussion of July 17, 2018

FCAL energy deposition for TOF trigger events

- Almost half the triggers have energies below 100 MeV
- The CSDA range for 100 MeV electrons in iron is approx. 1.5 "
- Should we put a 1.5" thick steel plate in front of the TOF covering approximately $60^{\prime \prime} \times 60^{\prime \prime}$, the size of the MWPCs ?

Tentative Conclusions

- Trigger rates under 90 kHz are possible if,
i. the trigger can reject events with $\mathrm{R}<18 \mathrm{~cm}$,
ii. the TOF scintillators are pulled back 18 cm from the beam hole,
iii. the coincidence window between TOF paddles is reduced to 20 ns .
- More trigger tests are needed this fall with a 5\% RL target pulled back to $\mathrm{z}=1 \mathrm{~cm}$.
- We should advocate for the TOF modification next summer.
- A 1.5" thick steel plate in front of the TOF might reduce the rate by 50%. Could do a test this fall on a few paddles if there's time.

Pair production cross sections on proton for GlueX running conditions with track going into TOF

Picking the target(s) for CPP

$$
\frac{d \sigma_{\gamma A \rightarrow \rho}(t)}{d t} \cong \frac{d \sigma_{\gamma A \rightarrow \rho}\left(t_{\min }\right)}{d t} e^{-\alpha t}
$$

$$
\frac{d \sigma_{\gamma A \rightarrow \rho}(t)}{d t}=\frac{d \sigma_{\gamma A \rightarrow \rho}\left(t_{\min }\right)}{d t} e^{-\alpha t}
$$

Primakoff yield per radiation length

Next step:

- Integrate Primakoff and ρ^{0} cross sections over a reasonable range in angle, $\pi \pi$ invariant mass, and momentum transfer. Find the Primakoff $/ \rho^{0}$ cross section ratio as a function of mass number A.

