Preliminary GEANT study of triplet polarimeter

Michael Dugger* *Arizona State University*

Polarimeter Monte Carlo

• Inner diameter: 48 mm

• Outer diameter: 96 mm

• Thickness: 1 mm

• Rings: 16 equally spaced

• Sectors: 16 sectors each spanning 22.5°

• Placed 48 mm downstream of the converter

• 10 million generated events using Richard's code

• Converter: 10⁻⁴ radiation length carbon

• Vertex smeared evenly through the converter in z-direction and evenly over a beam spot diameter of 5 mm in the xy-direction

Polarimeter energy deposition multiplicities over 16 rings and 16 sectors

• 98% of energy deposition hits falls within a single sector

Generated events with no losses in converter (with matched pairs: within 1 GeV)

Generated events with energy losses in converter (carbon: 10⁻⁴ radiation lengths)

Recoil polar angle at polarimeter versus generated recoil angle

• θ_{R^*} is recoil angle at the polarimeter

 θ_{R^*}

• θ_R is recoil from generator

• Events with KE < 0.2 GeV are from large generated angles that scatter to smaller angles when seen at the polarimeter

Energy deposited in 1000 micron silicon ring detector versus kinetic energy

Energy deposited in 1000 micron silicon

Smearing of azimuthal angle

• $\Delta \varphi_1 =$ φ from generator $-\varphi$ at polarimeter

• $\Delta \varphi_2 =$ φ from generator - φ digitized from sector hit

Triplet asymmetry

• Fit function:

$$A[1 + B\cos(2\varphi)]$$

- Case1: φ from generator and single sector hit, $B = -0.220 \pm 0.008$
- Case2: φ at detector and single sector hit, $B = -0.178 \pm 0.008$ (81% of Case1)
- Case3: φ digitized at detector and single sector hit: $B = -0.168 \pm 0.008$ (76% of Case1)

• Case4: φ digitized at detector, single sector hit, and energy deposited in detector > 0.2 MeV: $B = -0.206 \pm 0.008$ (94% of Case1)

