Preliminary GEANT study of triplet polarimeter

Michael Dugger*
Arizona State University

Polarimeter Monte Carlo

- Inner diameter: 48 mm
- Outer diameter: 96 mm
- Thickness: 1 mm
- Rings: 16 equally spaced
- Sectors: 16 sectors each spanning 22.5°
- Placed 48 mm downstream of the converter
- 10 million generated events using Richard's code
- Converter: 10^{-4} radiation length carbon
- Vertex smeared evenly through the converter in z-direction and evenly over a beam spot diameter of 5 mm in the xy-direction

Polarimeter energy deposition multiplicities over 16 rings and 16 sectors

- 98% of energy deposition hits falls within a single sector

Generated events with no losses in converter (with matched pairs: within 1 GeV)

Generated events with energy losses in converter (carbon: 10^{-4} radiation lengths)

- Would like to make a cut accepting $k e>0.2 \mathrm{MeV}$

$$
\begin{aligned}
& 5_{0}^{0} \\
& \underbrace{0}_{0} \\
& 0
\end{aligned}
$$

What are these events?
Recoil angle (degrees)

Recoil polar angle at polarimeter versus generated recoil angle

- $\theta_{R^{*}}$ is recoil angle at the polarimeter
- θ_{R} is recoil from generator
- Events with $\mathrm{KE}<$
0.2 GeV are from large generated angles that scatter to smaller angles when seen at the polarimeter

No KE restriction

$\mathrm{KE}<0.2 \mathrm{MeV}$

Energy deposited in 1000 micron silicon ring detector versus kinetic energy

Energy deposited in 1000 micron silicon

Smearing of azimuthal angle

- $\Delta \varphi_{1}=$
φ from generator
$-\varphi$ at polarimeter
- $\Delta \varphi_{2}=$
φ from generator
- φ digitized from sector hit

Triplet asymmetry

- Fit function:
$\mathrm{A}[1+\mathrm{B} \cos (2 \varphi)]$
- Case 1: φ from generator and single sector hit, $B=-0.220 \pm 0.008$
- Case2: φ at detector and single sector hit, $B=-0.178 \pm 0.008$ (81\% of Case1)
- Case3: φ digitized at detector and
 single sector hit: $B=-0.168 \pm 0.008$ (76\% of Case1)
- Case4: φ digitized at detector, single sector hit, and energy deposited in detector > $0.2 \mathrm{MeV}: B=-0.206 \pm 0.008(94 \%$ of Case $)$

