

2018-01 Run, Bethe-Heitler Study $\gamma p \rightarrow e^+e^-(p)$

Andrew Schick

Friday, August 23 2019

Objectives of the BH Analysis:

- 1. Use Bethe-Heitler pair production for normalization in the Charged Pion Polarizability experiment. Therefore, developing an analysis suite for BH pairs is necessary.
- 2. We would like to extract the polarization signal of the BH pairs.
- 3. Measure the form factor/charge radius of the proton.

Cuts for $\gamma p \rightarrow e^+ e^-(p)$

Preselection Cuts

- 1. Default GlueX cuts: <u>https://halldweb.jlab.org/wiki/index.php/Spring_2017_Analysis_Launch_Cuts</u>
- 2. Require E/p = 0.7 for electron and positron tracks in FCAL and BCAL

DSelector Cuts

- 1. Cut on coherent peak: $8.12 < E\gamma < 8.88$
- 2. Require both electron and positron tracks have hit in FCAL
- 3. Require both electron and positron tracks have hit in TOF
- 4. Require dMinKinFitCL > 10E-6
- 5. Eliminate events with NumUnusedTracks ≥ 2
- 6. Eliminate events with Energy_UnusedShowers > 0
- 7. TOF dE/dx cut for electron and positron tracks at 3σ
- 8. FCAL DOCA cut for e+ and e- tracks at 3σ

A. Schick, August 23 2019

A. Schick, August 23 2019

Proton Mis-ID?

- Calibration is off between MC and DATA
- Otherwise, dE/dx for positron looks mostly independent of momentum

University of Massachusetts

Amherst

8

2018 Data

Need explanation that satisfies:

- **1. Small Invariant Mass**
- 2. One Extra (Unused) Track
- 3. Very Small Opening Angle
- 4. Good dE/dx

Split Up Analysis Into "No Unused Track" and "One Unused Track" channels.

1. Cut on $\frac{E_1}{p_1}$ at $\pm 3\sigma$ (p1 is kinematic, not measured)

We'll look at some plots with this cut applied.

2. Fit $\frac{E_2}{P_2}$ (p2 is kin. not meas.) and subtract background

Not yet implemented. Still need to carve time away to learn how to properly fit.

A. Schick, August 23 2019

Amherst

A. Schick, August 23 2019

Amherst

A. Schick, August 23 2019

Conclusions

Need to track down discrepancies between MC and data:

- Widths of peaks -> Calibration issues?
- Why does MC not model the low invariant mass peak?

Have to return to MC to make it as robust as possible:

- Real bremsstrahlung photon distribution
- Tagger Accidentals
- Open up phase space in theta to have very low angle tracks along the beam line
- More events!

Backup Slides

