
Hall C

Off-line Analysis and Simulation in the 12 GeV Era

May 20, 2011

Hall C after 12 GeV Upgrade

- Beam Energy: 2 11 GeV/c
- Super High Momentum
 Spectrometer (SHMS) (NEW)
 - Horizontal Bender, 3 Quads, Dipole
 - P \rightarrow 11 GeV/c
 - $dP/P 0.5 1.0x10^{-3}$
 - Acceptance: 5msr, 30%
 - $5.5^{\circ} < \theta < 40^{\circ}$
- High Momentum Spectrometer (HMS) (EXISTING)
 - P \rightarrow 7.5 GeV/c
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 6.5msr, 18%
 - $10.5^{\circ} < \theta < 90^{\circ}$
- Minimum opening angle: 17°
- Well shielded detector huts
- Cryotargets

- Compton and Moller beam polarimeters
 - Ideal facility for:
 - Rosenbluth (L/T) separations
 - Exclusive reactions
 - Low cross sections (neutrino level)

Simulation

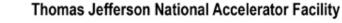
- Most standard equipment experiments use SIMC for experiment planning and analysis:
 - Physics models generate coincidence events in apertures of spectrometers
 - Matrix style transport to trace events through magnets
 - Used to:
 - Model decay, energy loss, multiple scattering, algorithm efficiencies...
 - Make radiative, coulomb, acceptance corrections
 - Iterate physics models by changing event weights
 - Typically <= 10% of experiment analysis CPU time
- Large Installation/non-standard equipment experiments use Geant4/Geant3/Custom simulations
 - Large installation experiments have been a major part of 6 GeV Hall C
 - < 1/3 of current 12 GeV lineup uses elements beyond standard equipment
 - Simulations tend to use university or desktop computing resources

Analysis

- Hall C Engine Fortran/HBOOK:
 - Tracking and PID by ENGINE -> ntuple of reduced size
 - 2 to 4 raw data -> ntuple passes typically done
 - Usually able to keep all ntuples for an experiment on disk
- ROOT based analyzers used for Hall C Parity experiments
- 12 GeV Plans
 - Develop root analyzer using Hall A analyzer as starting point
 - Update Fortran analyzer to support new SHMS backup and validation of root analyzer.
 - (SHMS detector package very similar to decomissioned SOS).
 - Use of root analyzer will, at least initially, increase per event analysis times and analysis output ("ntuple") sizes

Resource Estimates

- Current experiment: Qweak (to May 2012) very different DAQ and Analysis style from future Hall C experiments, but resource needs not to far from future needs:
 - 1kHZ trigger, 4kb/event, ~50 weeks@60% -> 75TB, 2x10¹⁰ events
 - 10ms/event, 2 analysis passes, "ntuple"/raw = 4
 - CPU time 2x10⁸sec, 3 farm cores
 - 600TB cooked data, 60TB on live disk
- 2015:
 - 5kHZ trigger, 4kb/event ~30 weeks@60% -> 220TB/year 5x10¹⁰ events
 - 10ms/event, 2 analysis passes, "ntuple"/raw = 2
 - CPU time 5x10⁸, 17 farm cores
 - 900TB cooked data, 90TB on live disk (for 2-3 years)
- 2016
 - 10 kHZ trigger, ~30 weeks
 - 34 farm cores, 1.75PB cooked data/year, 175TB on live disk (for 2-3 years)



Comments

- Many experiments will have physics rates << DAQ maximum or have high rates for a fraction of kinematic settings
 - Initial hardware PID cuts will be loose (PID harder at higher energies)
 - Hardware coincidence windows may initially be large
 - Experiments may choose low pre-scale factors for singles in coincidence experiments
 - Flash ADC data may not be well sparsified. High rate experiments will want full waveform to deal with multiple tracks.
- Experience will bring

Jefferson Lab

- Lower DAQ rates from better use of trigger
- Smaller root tree/ntuple sizes as understanding of hardware and analyzer improves
- Need to be prepared for worst case to avoid surprises
 - Periodic data challenges
- DB (mysql) access from farm will be important

