GlueX DIRC Calibration (III)

Ahmed Ali (GSI, Frankfurt Uni.)

Roman Dzhygadlo Maria Patsyuk Joe Schwiening

20/6/2017

Outline

- Introduction
- Designed a fitting function
- Developed two methods to successfully determine t_0 and δ_{t_0} with good precision of <100ps per pixel
- Time delay between ports removes t₀ ambiguity.
- Conclusion/ Outlook

Introduction

- The goal of the study is calculating the t_0 , and δ_{t_0} for an LED-based calibration system.
- Include quantum efficiency
- Simulation study was performed using one dataset which has 1000 simulated samples with different MC random seeds, each sample was generated by firing 200k events with 100 photons per event

Introduction

$$\sigma_{t}$$
(GlueX DIRC time precision) = $\sqrt{\sigma_{TTS}^{2} + \sigma_{DAQ}^{2} + \sigma_{t_{0}}^{2}}$

Where:

 σ_{TTS} (transit time spread) = 120ps

 $\sigma_{DAC}(\text{Data Acquisition}) = \frac{1000}{\sqrt{12}} \approx 285 \text{ps, where DAQ binning} = 1 \text{ns}$ $\sigma_{t}(\text{without } \sigma_{t0} \text{term}) = \sqrt{\sigma_{TTS}^{2} + \sigma_{DAQ}^{2}} = \sqrt{120^{2} + 285^{2}} \approx 310 \text{ps}$ $\sigma_{t_{0}} = ? \text{ps}$ $\sigma_{t} = \sqrt{\sigma_{TTS}^{2} + \sigma_{DAQ}^{2} + \sigma_{t_{0}}^{2}} = \sqrt{120^{2} + 285^{2} + ?} \approx ? \text{ps}$

Introduction

- Consider the PMT H12700 transit time spread contribution as a Gaussian distribution with sigma ~120 ps.
- Simulate LED time profile as suggested by Fernando
- Add dark noise as 1kHz per pixel
- Photon time distribution for an example channel, after implementation of quantum efficiency about 2000 photon are detected on this pixel from a total of 20M photons generated from the middle diffuser
- Simulations were carried out using a square diffuser with 50° Opening Angle

Designed Fitting Function

 Designing fitting function as a convolution of two functions: the PMT gauss smearing with sigma ~120 ps and the time profile of the LED

• The fitting function used for extracting the LED t_0 and $\delta_{t_0}.$

Photon Time Distribution Pixel by Pixel

Photon time distribution pixel by pixel using one sample

Corresponding t₀ distribution pixel by pixel using all samples

One Port t_0 and δ_{t_0} Maps (Method A)

Each pixel filled with the corresponding mean value of t_0 distribution from all samples.

Each pixel filled with the RMS of t_0 distribution.

Low statistics along the edges causes larger errors - these pixels will be covered by the other two ports.

_{6.4} [ns]

6.2

6

5.8

5.6

5.4

Photon Time Distribution Pixel by Pixel Method (B) mcp 50, pixel 0 mcp 48, pixel 40 mcp 64, pixel 37 entries [#] entries [#] hPTime 4840 hPTime 6437 hPTime 5000 Entries 2248 Entries 1944 Entries 1434 5.044 6.019 Mean 5.66 Mean Mean 250 RMS 1.729 RMS 150 RMS 1.788 1.747 200

 χ^2 / ndf

Constant

½ FWHM

15

Arrival

Time

" fill using the designed fit function"

 γ^2 / ndf

Constant

½ FWHM

Arrival

Time

9.967 / 5

14.42 ± 0.32

5.055 ± 0.017

 2.597 ± 0.017

20

time [ns]

150

100

50

0

5

#400

entries [

250

200

150

100

50 **F**

Photon time distribution pixel by pixel using one sample from dataset _20M

17.58 / 6

 13 ± 0.3

time [ns]

5.649 ± 0.027

2.456 ± 0.029

20

100

50

5

Corresponding t₀ distribution pixel by pixel using all samples

 χ^2 / ndf

Constant

½ FWHM

15

Arrival

Time

10

8.09 / 5

time [ns]

 9.061 ± 0.248

5.937 ± 0.021

 2.639 ± 0.022

20

One Port t_0 and δ_{t_0} Maps (Method B)

Each pixel filled with the corresponding mean value of t_0 distribution from all samples.

Each pixel filled with the RMS of t_0 distribution.

Low statistics along the edges causes larger errors - these pixels will be covered by the other two ports.

_{6.4}[ns]

6.2

6

5.8

5.6

5.4

Three Port t₀ Map calculations

Three Port t_0 and δ_{t_0} Maps (Method A)

 δ_{t_0}

13

Three Port t_0 and δ_{t_0} Maps (Method A)

Relaxing the LED pulse characteristics by doubling the timing on the rise, fall times and width and adding additional timing jitter[20ps].

 δ_{t_0}

Three Port t_0 and δ_{t_0} Maps (Method B)

Three Port t_0 and δ_{t_0} Maps (Method B)

 t_0

Relaxing the LED pulse characteristics by doubling the timing on the rise, fall times and width and adding additional timing jitter[20ps].

Conclusion/ Outlook

Simulation of LED-based calibration shows stable t_0 determination with an error of < 100ps

$$\sigma_{t}$$
(GlueX DIRC time precision) = $\sqrt{\sigma_{TTS}^{2} + \sigma_{DAQ}^{2} + \sigma_{t_{0}}^{2}}$

Where:

$$\begin{split} \sigma_{TTS}(\text{transit time spread}) &= 120\text{ps} \\ \sigma_{DAC}(\text{Data Acquisition}) &= \frac{1000}{\sqrt{12}} \approx 285\text{ps, where DAQ binning} = 1\text{ns} \\ \sigma_t(\text{without } \sigma_{t0}\text{term}) &= \sqrt{120^2 + 285^2} \approx 310\text{ps} \\ \sigma_{t_0} &= 100 \text{ ps} \\ \sigma_t &= \sqrt{120^2 + 285^2 + 100^2} \approx 325\text{ps} \end{split}$$

Using an relaxed LED pulse timing characteristics $\sigma_{t_0} = 200 \text{ ps}$ $\sigma_t = \sqrt{120^2 + 285^2 + 200^2} \approx 370 \text{ ps}$

Thank You