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a b s t r a c t

A new computational model for the description of the photon detector response functions measured in
conditions of low light is presented, together with examples of the observed photomultiplier signal amplitude
distributions, successfully described using the parameterized model equation. In extension to the previously
known approximations, the new model describes the underlying discrete statistical behavior of the photoelectron
cascade multiplication processes in photon detectors with complex non-uniform gain structure of the first dynode.
Important features of the model include the ability to represent the true single-photoelectron spectra from
different photomultipliers with a variety of parameterized shapes, reflecting the variability in the design and
in the individual parameters of the detectors. The new software tool is available for evaluation of the detectors’
performance, response, and efficiency parameters that may be used in various applications including the ultra low
background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies,
optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the
experiment simulations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This work has been initiated by the new large-scale RICH detector [1]
development undertaken as a part of the CLAS12 detector upgrade [2] at
Jefferson Lab, during which a large number (more than 27 thousand) of
the ultra low light detector channels needed to be studied, selected, and
characterized. Solving this problem helped us to realize the importance
of the new approach to a wider set of applications involving the
multitude of the ultra low light detection systems.

The study revisits the problem of description and parameterization
of the photomultiplier tube (PMT) response functions measured in the
conditions of low light when only a few photoelectrons contribute to
each measured signal. Correct evaluation of the single photoelectron
(SPE) response is of significant interest for the photon detector science
and metrology. It is also critical for many applications in the particle
detector field where characterization of the detector response and
efficiency is required for data analysis, and in astrophysics where precise
photon flux measurements are vital, see, for example, Refs. [3,4].

Several approaches to this problem have been developed and uti-
lized, see Refs. [5–10], and references therein. The common feature of
the previous work in this field is the use of a rather rigid functional form
for the description of the SPE spectra, such as the Poisson distribution
form in [5–8], the Gaussian form in [9], or a more complicated form of a
weighted sum of Gaussian and exponential distribution in [10]. Certain
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types of photon detectors exhibit, however, more complicated behavior
of the spectra, see Refs. [11–16]. Qualitatively it may be understood, for
example, if the properties of the first amplification cascade of the device
(the first dynode of a PMT) are non-uniform. This effect may be expected
more visible in the multianode photomultiplier tubes (MAPMTs) in
which the area along the edges of the first dynodes, possibly exhibiting
different gain compared to the central parts, may be relatively large.
Other physics effects and PMT design and construction features may
contribute to the gain non-uniformity. SPE spectra in such cases can be
expected to require a larger number of parameters for their description
compared to the standard approach.

It is possible in principle to measure the SPE spectra experimen-
tally at very low light conditions, and then use the data to predict
the amplitude spectrum at any light [11]. The method is, however,
resource consuming as the measurements at a really low light are
difficult. Attempts to extract such detailed SPE spectra information from
measurements in realistic conditions require complicated deconvolution
algorithms [13].

This study presents a new method of describing the SPE spectra of
virtually any reasonable complexity, therefore providing the tools for
the understanding and characterization of the photon detector response
in general. Finding a suitable structure of the SPE spectra and the set
of parameters describing experimental signal amplitude distributions
measured by the PMT photon detectors is the challenge that this work

http://dx.doi.org/10.1016/j.nima.2017.07.053
Received 24 August 2016; Received in revised form 26 July 2017; Accepted 27 July 2017
Available online 5 August 2017
0168-9002/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.nima.2017.07.053
http://www.elsevier.com/locate/nima
http://www.elsevier.com/locate/nima
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2017.07.053&domain=pdf
mailto:pavel@jlab.org
http://dx.doi.org/10.1016/j.nima.2017.07.053


P. Degtiarenko Nuclear Inst. and Methods in Physics Research, A 872 (2017) 1–15

addresses. A systematic approach and successful solution to this problem
opens better opportunities to characterize and calibrate such photon
detectors, make an educated selection of sample devices that would
work best for a particular purpose, create new software tools simulating
behavior of the photon detectors in real installations.

2. General definitions

An amplitude response function of a photon detector in general,
PMT in particular, may be defined in terms of probability distributions
as described, for example, in Ref. [17]. Following the notation and
terminology of [17], the function 𝑓𝑃𝑀𝑇 (𝑠; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) represents the
parameterized probability density function (p.d.f.) of signal amplitude
(or charge) 𝑠.

The parameterized p.d.f. describes and may be used to approximate
the probability distribution of the observed value of 𝑠 in experiments
in which multiple repeatable measurements are performed in stable
conditions of constant low light delivered to the photon detector. A
typical generalized setup for such measurements assumes that large and
stable pulses of light are generated, short enough to be measured within
the timing gates of the signal measurement system (and the gates in
turn are selected as short as reasonably possible to minimize the noise
contributions). The light pulse is then subjected to a heavy and stable
filtering such that only a few photons per pulse reached the detector.
Photons reaching the photon detector have a probability of knocking
out the photoelectrons at the detector’s first stage (photocathode in the
case of a PMT), in accordance with its photoelectron emission efficiency.
The number of the photoelectrons produced in one event is the integer
random variable 𝑚 ≥ 0. The average number of photoelectrons in one
event ⟨𝑚⟩ ≡ 𝜇 may be also defined as the ratio of the total number of
photoelectrons generated to the number of triggers.

Every measurement in such setup is triggered externally, the result-
ing signal amplitude or charge is recorded, and thus the experimentally
measured distribution is accumulated as a normalized function of 𝑠:
𝑊 (𝑠) = (1∕𝑁tot )d𝑁∕d𝑠, where 𝑁tot is the total number of triggers in
the run, and d𝑁∕d𝑠 is the accumulated experimental histogram with
bin width d𝑠. Function 𝑊 (𝑠) (≡ d𝑁∕d𝑠 p.d.f .) constitutes, therefore,
the probability density function of observed value of 𝑠 during the
measurements.

Such normalized experimental distributions can be compared with
𝑓𝑃𝑀𝑇 (𝑠; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), also normalized to unit area by definition. Then the
set of parameters may be found, corresponding to the best description of
the data by the parameterized function, using, for example, the method
of maximum likelihood as described in [18].

The signal values 𝑠meas are generally measured by a signal mea-
surement system such as the Analog (or Charge) to Digital Converter
(ADC, or QDC) devices, in units of their output (channels). The average
pedestal value of the measured signal ⟨𝑠ped⟩ is obtained from the events
with zero number of photoelectrons observed: ⟨𝑠ped⟩ ≡ ⟨𝑠meas⟩𝑚=0. In
a typical setup as described above, a noticeable portion of the events
may produce no photoelectrons, satisfying the condition 𝑚 = 0. The
resulting measured random variable distribution on 𝑠meas will exhibit
corresponding peak at 𝑠meas = ⟨𝑠ped⟩. The spread of the pedestal peak
corresponds to the experimental resolution of the signal measurement
system, and ideally is described by a Gaussian with the standard
deviation 𝜎 (in channels). The pedestal spread may be also measured
in separate runs with the light source turned off, or the light completely
filtered out.

The true signal value is defined here as

𝑠 = 𝑠meas − ⟨𝑠ped⟩, (1)

such that ⟨𝑠⟩𝑚=0 = 0 for events with 𝑚 = 0. If 𝑚 > 0, the average signal
amplitude ⟨𝑠⟩ is expected to be above zero. By definition, at 𝑚 = 1
when only one photoelectron is produced, the 𝑠 random variable will
be distributed according to the SPE spectrum 𝑝1(𝑠) p.d.f. Average 𝑠 over

the 𝑝1(𝑠) p.d.f. spectrum defines the 𝑠𝑐𝑎𝑙𝑒 parameter, corresponding to
the average signal value of the SPE signals:

𝑠𝑐𝑎𝑙𝑒 = ⟨𝑠⟩𝑚=1. (2)

In linear systems the parameter 𝑠𝑐𝑎𝑙𝑒 is directly proportional to the value
of the photon detector 𝑔𝑎𝑖𝑛, that is, the ratio of the measured output
current to the measured current from the photocathode.

Another convenient variable for use in the further discussion is
the value of the normalized signal amplitude 𝑎 = 𝑠∕𝑠𝑐𝑎𝑙𝑒, such that
⟨𝑎⟩𝑚=1 = 1. The probability distribution of the 𝑎 random variable,
𝑓 (𝑎; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) p.d.f., can be linked to the 𝑓𝑃𝑀𝑇 (𝑠; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) p.d.f.
through the relation

𝑓 (𝑎) = 𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑓𝑃𝑀𝑇 (𝑎 ⋅ 𝑠𝑐𝑎𝑙𝑒; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), (3)

to satisfy the normalization requirement

∫

∞

−∞
𝑓 (𝑎)d𝑎 = 1. (4)

The dependence on the vector of parameters is omitted for brevity in
the 𝑓 (𝑎) definition of Eq. (3), but assumed implicitly.

The probability distributions of the 𝑎 random variable in the events
with fixed number of photoelectrons 𝑚 ≥ 0 are defined as 𝑝𝑚(𝑎) p.d.f.,
with 𝑝0(𝑎) characterizing the pedestal measurement, and 𝑝1(𝑎) being
the SPE spectrum, characteristic for the setup comprised of the photon
detector and the signal measurement system.

The functions 𝑝𝑚(𝑎) are the result of the convolutions of the intrinsic
photodetector response probability distribution functions 𝜌𝑚(𝑎) and the
normalized signal measurement system resolution function 𝑅(𝑎) such
that

𝑝𝑚(𝑎) = ∫

∞

−∞
d𝑥 𝑅(𝑥) 𝜌𝑚(𝑎 − 𝑥) ≡ 𝜌𝑚 ∗ 𝑅, (5)

with 𝜌0(𝑎) = 𝛿(𝑎), and, correspondingly, 𝑝0(𝑎) = 𝑅(𝑎).

3. Photomultiplier response model

In the typical experimental setups as explained above, the random
variable 𝑚 is distributed according to the Binomial p.d.f. [17]. The two
model assumptions of

(a) stable and extremely small probability for an initial photon from
the light source to pass the heavy filtering and knock out a
photoelectron during one event, and

(b) the absence of inter-dependency between the photoelectrons

– guarantee that the probabilities of observing 𝑚 photoelectrons in
one event will be distributed according to the Poisson distribution (see
Refs. [11,17]):

𝑃 (𝑚;𝜇) =
𝜇𝑚𝑒−𝜇

𝑚!
. (6)

The conditions (a) and (b) above, along with the model assumptions
of

(c) negligible noise contribution,
(d) linearity of the signal measurement system, and
(e) non-biased signal measurement system resolution function, cor-

responding to the condition ⟨𝑅(𝑎)⟩ = 0

– allow us to unambiguously establish the relation between the value
of the 𝑠𝑐𝑎𝑙𝑒 parameter, the average signal amplitude measured ⟨𝑠⟩, and
the average number of photoelectrons per one event 𝜇:

𝑠𝑐𝑎𝑙𝑒 = ⟨𝑠⟩∕𝜇, (7)

which follows from the property of the Poisson distribution to have its
mean value equal to 𝜇 and the assumptions of independence, negligible
noise, linearity, and non-biased measurement. Correspondingly, ⟨𝑎⟩ = 𝜇.
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The five model assumptions (a) through (e), which seem to be
realistic in many practical cases, are used in further discussions and
model descriptions.

From these conditions it also follows that the intrinsic p.d.f. 𝜌2(𝑎),
being the distribution of the sum of two random variables each cor-
responding to the intrinsic SPE spectrum 𝜌1(𝑎) p.d.f., can be explicitly
expressed as their convolution

𝜌2(𝑎) = 𝜌1 ∗ 𝜌1 ≡ 𝜌1
∗2(𝑎), (8)

and, generally, for 𝑚 ≥ 1 photoelectrons the explicit expression

𝜌𝑚(𝑎) = 𝜌1
∗𝑚(𝑎) (9)

is the convolution of 𝑚 intrinsic SPE functions.
Thus, the p.d.f. for the intrinsic amplitude distribution from the

photodetector becomes

𝜙(𝑎) =
∞
∑

𝑚=0
𝑃 (𝑚;𝜇)𝜌𝑚(𝑎), (10)

and the expression for the model p.d.f. 𝑓 (𝑎) becomes

𝑓 (𝑎) = 𝜙 ∗ 𝑅 = 𝑒−𝜇𝑅(𝑎) +
∞
∑

𝑚=1
𝑃 (𝑚;𝜇) 𝜌1∗𝑚 ∗ 𝑅. (11)

The function 𝑓 (𝑎) satisfies the normalization requirement (4) follow-
ing the normalization of the Poisson p.d.f. and the normalization proper-
ties of the convolution algebra. A general textbooks on Probability and
Mathematical Statistics such as Refs. [19] and [20] may be consulted
for the definitions and for the discussion of the convolution properties.

To find an appropriate functional form for the possible parameteri-
zation of the intrinsic function 𝜌1(𝑎), we consider the process of electron
multiplication at the second stage of the photodetector (at the first
dynode of a PMT). Every photoelectron hitting the first dynode has a
probability of knocking one or more second-stage electrons, which in
turn will be amplified at the following dynodes. The average number
of the second-stage electrons per one photoelectron, 𝜈 (≡ 𝜈average),
can be considered a characteristic parameter of the detector. In every
event, the number of the second-stage electrons 𝑛 is a random variable
which characterizes the eventually measured signal 𝑠. Thus, we may
characterize the intrinsic SPE spectrum function 𝜌1(𝑎) internally in the
model by the discrete intrinsic probability distribution of the integer
random variable 𝑛 with its p.d.f. being the function of 𝑛: 𝑞1(𝑛). Similarly,
the discrete intrinsic functions 𝑞𝑚(𝑛) may be introduced, corresponding
to the continuous intrinsic signal distributions 𝜌𝑚(𝑎).

We may also build the discrete intrinsic second stage amplitude
distribution 𝜙2(𝑛) similar to Eq. (10):

𝜙2(𝑛) =
∞
∑

𝑚=0
𝑃 (𝑚;𝜇)𝑞𝑚(𝑛) = 𝑒−𝜇𝑞0(𝑛) +

∞
∑

𝑚=1
𝑃 (𝑚;𝜇)𝑞1∗𝑚(𝑛), (12)

where 𝑞0(𝑛) = 0 for all 𝑛, except 𝑛 = 0, where 𝑞0(0) = 1. The rules
and properties of the convolutions of the discrete functions are similar
to the convolutions of the continuous functions, with integration being
replaced by summation.

The connection of the discrete intrinsic 𝜙2(𝑛) p.d.f. to the continuous
function 𝑓 (𝑎) may be derived as follows. If we assume that the signal
measurement system measures the number of second-stage electrons 𝑛
directly, then the measured discrete signal distribution can be repre-
sented as a function of the normalized amplitude 𝑎 in the form of the
infinite sum of correspondingly weighted delta-functions, one per each
value of 𝑛 ≥ 0:

𝐷(𝑎) =
∞
∑

𝑛=0
𝛿
(

𝑎 − 𝑛
𝜈

)

∞
∑

𝑚=0
𝑃 (𝑚;𝜇)𝑞𝑚(𝑛), (13)

where 𝑛 in the argument of the delta-function is normalized to the
average multiplicity 𝜈 of electrons produced by a single photoelectron at
the first dynode, to provide the proper scale for the 𝑎 variable, that is, to
make average 𝑎 to be equal to one in events with only one photoelectron.

The output of the signal measurement system, corresponding to
the resulting model function 𝑓 (𝑎), constitutes the convolution of the
discrete intrinsic input spectrum of Eq. (13) with a realistic signal
measurement resolution function 𝑅(𝑎) (often it is a Gaussian with the
standard deviation parameter 𝜎𝑎). The convolution may be performed
by integrating the equation

𝑓 (𝑎) = ∫

∞

−∞
d𝑥 𝑅(𝑥) 𝐷(𝑎 − 𝑥)

= ∫

∞

−∞
d𝑥 1

√

2𝜋 𝜎𝑎
exp

(

− 𝑥2

2𝜎2𝑎

)

𝐷(𝑎 − 𝑥). (14)

The result of the integration may be presented in the form

𝑓 (𝑎) =
∞
∑

𝑛=0
𝐺(𝑎, 𝑛; 𝜎𝑎)

∞
∑

𝑚=0
𝑃 (𝑚;𝜇)𝑞𝑚(𝑛), (15)

in which the probability of observing 𝑛 electrons exiting the first dynode
(the inner sum over 𝑚 as defined in Eq. (12)) is multiplied by the
function

𝐺(𝑎, 𝑛; 𝜎𝑎) =
1

√

2𝜋 𝜎𝑎
exp

[

−
(𝑎 − 𝑛∕𝜈)2

2 𝜎2𝑎

]

. (16)

The connection between the continuous and discrete intrinsic signal
distributions for events at fixed 𝑚 may be written correspondingly:

𝑝𝑚(𝑎) =
∞
∑

𝑛=0
𝐺(𝑎, 𝑛; 𝜎𝑎)𝑞𝑚(𝑛). (17)

Eq. (15) with 𝐺(𝑎, 𝑛; 𝜎𝑎) in the form of Eq. (16) corresponds to the
model of a hypothetical photon detector consisting of only two stages
of multiplication. For a PMT, it would be the photocathode and the first
dynode. Such a device would be connected to a signal measurement
system with a linear response and the Gaussian measurement function,
measuring signals from any number of secondary electrons with the
same resolution (standard deviation parameter of the Gaussian) 𝜎 in
channels ADC. The standard deviation 𝜎 can be determined from the
experimental data by fitting the pedestal amplitude distribution with a
parameterized Gaussian, and the 𝜎𝑎 parameter in Eq. (16) would then
be determined as

𝜎𝑎 = 𝜎∕𝑠𝑐𝑎𝑙𝑒. (18)

Realistic PMTs generally have more stages. The third one, and the
stages that follow, may introduce extra statistical spread in the charge
collected by the ADC at any given 𝑛. This can be modeled in the way
similar to Eq. (12) by choosing the number of the third-stage electrons
𝑘 as the integer random variable characterizing the signal 𝑠. The new
discrete intrinsic third stage amplitude distribution 𝜙3(𝑘) will look as
follows:

𝜙3(𝑘) =
∞
∑

𝑚=0
𝑃 (𝑚;𝜇)

∞
∑

𝑛=0
𝑞𝑚(𝑛)𝑟𝑛(𝑘), (19)

where 𝑟𝑛(𝑘) is the p.d.f. for the probability of observing 𝑘 electrons at the
third stage of the PMT if the number of electrons at the second stage is 𝑛.
Further stages can in principle be considered by building corresponding
functions 𝜙4(𝑙) (𝑙 being the number of electrons at the fourth stage),
etc. Practically, however, they would be of interest only if the signal
measurement system was capable of resolving extremely small signals
corresponding to a single electron from the corresponding stage. In this
work we limit the model at the second stage, corresponding to the 𝑛
random variable. Further stages help to define and model the additional
statistical spread in conversion of the integer scale 𝑛 into continuous
scale 𝑠 of the measured signal amplitude.

We approximate the extra statistical spread in the measured value
of 𝑛, assuming there is another variable in the model, parameter 𝜉,
corresponding roughly to the average number of the electrons knocked
off at the third stage (from the second dynode of the PMT) by the
electrons coming from the second stage (first dynode). The spread in the

3
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number of these third stage electrons is assumed to be purely statistical
when the number of third-stage electrons is reasonably high (𝑛𝜉 > 10),
and is simulated using Eq. (19) otherwise, assuming that the gain at the
fourth stage is equal to 𝜉 also, and the statistical spread there is purely
statistical. Such approximation cannot be used at a very small 𝜉 < 1. In
practice the PMT cascade multiplication factors at the second and third
dynodes are generally well above 1.

The statistical spread is implemented in the model by substituting
the 𝜎𝑎 parameter in Eq. (16) with the new parameter 𝜎eff which may
depend on 𝑛,

𝜎eff (𝑛) =
√

𝜎2𝑎 + 𝜎2𝜉 =

√

( 𝜎
𝑠𝑐𝑎𝑙𝑒

)2
+ 𝑛

𝜈2𝜉
, (20)

which is the result of adding in quadrature the normalized sigma as
defined in Eq. (18), and the parameterized spread of the measured
amplitude by the third and further amplification stages of the detector.
The relative statistical error for the value of the scaling term 𝑛∕𝜈 in
Eq. (16) is assumed to be
𝜎𝜉 (𝑛∕𝜈)
𝑛∕𝜈

= 1
√

𝑛𝜉
. (21)

Correspondingly, the quadrature contribution of this uncertainty to the
overall standard deviation becomes

𝜎2𝜉 (𝑛∕𝜈) =
𝑛
𝜈2𝜉

. (22)

We note here that this approach will result in the pedestal peak in the
spectrum (at 𝑛 = 0) being described by the Gaussian with 𝜎eff (0) = 𝜎𝑎.
In experiments at low light where a significant portion of events results
in no photoelectrons (corresponding to the values of 𝑚 = 0 and 𝑛 = 0),
say, at 𝜇 less than 2–3, the pedestal peak can be used in the independent
fit procedure to determine the value of 𝜎.

So far we have introduced five parameters in the attempt to link
the measured experimental signal amplitude distribution d𝑁∕d𝑠 p.d.f .
and the parameterized function 𝑓 (𝑎), namely, 𝑠𝑐𝑎𝑙𝑒, 𝜎, 𝜇, 𝜈, and 𝜉. The
problem will fully be solved when we find appropriate parameterized
form for the function 𝑞1(𝑛) for use in Eq. (12) such that the resulting
parameterized function 𝑓 (𝑎) of Eq. (15) could approximate experimental
data successfully.

The simplest practical model for the production of the second-
stage electrons is the model of independent Poissonian production with
average 𝜈, assuming that every photoelectron produces the secondary
electrons independently and uniformly, as it was suggested in the earlier
studies, see Refs. [5–8]. The explicit form for the function 𝑞1(𝑛) in such
case is the Poisson distribution

𝑞1(𝑛) = 𝑃 (𝑛; 𝜈) ≡ 𝜈𝑛𝑒−𝜈

𝑛!
. (23)

Rules for adding random Poissonian variables and convolution algebra
(see, for example, Refs. [19,20]) result also in the explicit form for the
functions 𝑞𝑚(𝑛) at any 𝑚 ≥ 1:

𝑞𝑚(𝑛; 𝜈) =
(𝑚𝜈)𝑛𝑒−𝑚𝜈

𝑛!
≡ 𝑃 (𝑛;𝑚𝜈), (24)

and the expression for the function 𝑓 (𝑎) of Eq. (15) becomes the double
sum on 𝑛 and 𝑚:

𝑓 (𝑎) =
∞
∑

𝑛=0

{

𝐺(𝑎, 𝑛; 𝜎eff )

[

𝑒−𝜇𝑞0(𝑛) +
∞
∑

𝑚=1
𝑃 (𝑚;𝜇)𝑃 (𝑛;𝑚𝜈)

]}

. (25)

For a given set of parameters and at any 𝑎 the sum (25) may be
evaluated numerically. Resulting function 𝑓 (𝑎; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) could be a
reasonable approximation for the d𝑁∕d𝑎(𝑎) p.d.f. for some photodetec-
tors. In the case of PMTs we have found that we need more flexibility
and more than one parameter to describe the second-stage production
function 𝑞1(𝑛) satisfactorily.

Building on the above approach, we may increase the complexity
and variability of the model approximation for the function 𝑞1(𝑛) by

assuming that several Poisson distributions with different averages can
contribute to it. Qualitatively, such pattern could be observed, for
example, in the case of a photomultiplier having a non-uniform first
dynode with distinct areas of different first dynode gain. Generally, more
parameters allow to investigate more complicated shapes of the function
𝑞1(𝑛). Arguably, given enough gain components and corresponding
extra free parameters, we could claim ultimately good description of
any measured spectrum by decomposing it into a series of constituent
Poisson distributions.

Assume that the discrete intrinsic SPE distribution function 𝑞1 is
composed of 𝐿 ≥ 1 elementary Poissonian components such that it can
be presented in the form

𝑞1(𝑛; 𝐯𝐋) =
𝐿
∑

𝑢=1
𝛼𝑢𝑃 (𝑛; 𝜈𝑢), (26)

wherein the corresponding partial gains, or average multiplicities of the
Poissonian components are 𝜈1,… , 𝜈𝐿, their relative contributions to the
SPE function are 𝛼1,… , 𝛼𝐿, satisfying the equation
𝐿
∑

𝑢=1
𝛼𝑢 = 1, (27)

and 𝐯𝐋 = (𝜈1, 𝛼2, 𝜈2,… , 𝛼𝐿, 𝜈𝐿) is the vector of parameters, with 𝐯𝟏 ≡ (𝜈1),
𝐯𝟐 ≡ (𝜈1, 𝛼2, 𝜈2), 𝐯𝟑 ≡ (𝜈1, 𝛼2, 𝜈2, 𝛼3, 𝜈3), etc.

In general, at any 𝑚 ≥ 1, 𝑞𝑚(𝑛; 𝐯𝐋) may be written as

𝑞𝑚(𝑛; 𝐯𝐋) = 𝑞1
∗𝑚(𝑛; 𝐯𝐋) ≡ 𝑀𝐿(𝑛, 𝑚; 𝐯𝐋). (28)

The equation for the multinomial 𝑀𝐿(𝑛, 𝑚; 𝐯𝐋) function then follows
from the properties of convolution powers (see Ref. [20]) applied to
𝑞1(𝑛; 𝐯𝐋):

𝑀𝐿(𝑛, 𝑚; 𝐯𝐋) =

[ 𝐿
∑

𝑢=1
𝛼𝑢𝑃 (𝑛; 𝜈𝑢)

]∗𝑚

=
∑

𝑖1+⋯+𝑖𝐿=𝑚
𝑖1 ,…,𝑖𝐿≥0

𝑚!
𝐿
∏

𝑢=1

(

1
𝑖𝑢!

𝛼 𝑖𝑢
𝑢

)

𝑃 (𝑛; 𝜈𝑐𝐿), (29)

wherein

𝜈𝑐𝐿 =
𝐿
∑

𝑢=1
𝜈𝑢𝑖𝑢 (30)

is the average multiplicity of the secondary electrons in each of the
(𝑖1,… , 𝑖𝐿) combinatorial elements contributing to the sum in Eq. (29).
The combinatorial sum is performed for all𝐿-dimensional combinatorial
elements (𝑖1,… , 𝑖𝐿) satisfying the conditions 𝑖𝑢 ≥ 0 for each 𝑢, and
∑𝐿

𝑢=1𝑖𝑢 = 𝑚. See Ref. [21] for the definitions and for the discussion of
the multinomial coefficients in the sum.

The number 𝐿 of elementary Poisson distributions in the decompo-
sition of Eq. (26) can be chosen to accommodate expected or observed
complexity in the SPE spectra. Larger 𝐿 values would provide for more
complicated spectral shapes, but require more computing resources,
as well as increase the number of variable parameters, making the
approximation process more difficult.

The explicit form for the function 𝑀1(𝑛, 𝑚; 𝐯𝟏) at 𝐿 = 1 is similar to
that of Eq. (24):

𝑀1(𝑛, 𝑚; 𝐯𝟏) = 𝑃 (𝑛; 𝜈1𝑚), (31)

at 𝐿 = 2 it can be represented as the binomial sum:

𝑀2(𝑛, 𝑚; 𝐯𝟐) ≡ 𝐵(𝑛, 𝑚;𝐛)

=
𝑚
∑

𝑖=0

𝑚!
𝑖!(𝑚 − 𝑖)!

(1 − 𝛼2)𝑖(𝛼2)𝑚−𝑖𝑃 (𝑛; 𝜈1𝑖 + 𝜈2𝑚 − 𝜈2𝑖), (32)

and at 𝐿 = 3 it corresponds to the trinomial sum:

𝑀3(𝑛, 𝑚; 𝐯𝟑) ≡ 𝑇 (𝑛, 𝑚; 𝐭) =
∑

𝑖1+𝑖2+𝑖3=𝑚
𝑖1 ,𝑖2 ,𝑖3≥0

𝑚!
𝑖1! 𝑖2! 𝑖3!

𝛼 𝑖1
1 𝛼𝑖22 𝛼

𝑖3
3 𝑃 (𝑛; 𝜈𝑐 ), (33)
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wherein

𝜈𝑐 = 𝜈1𝑖1 + 𝜈2𝑖2 + 𝜈3𝑖3 (34)

is the average multiplicity of the secondary electrons in each of the
(𝑖1, 𝑖2, 𝑖3) combinatorial elements, and

𝑃 (𝑛; 𝜈𝑐 ) =
(𝜈𝑐 )𝑛 exp(−𝜈𝑐 )

𝑛!
. (35)

The trinomial sum of Eq. (33) proved to be sufficient in characteriz-
ing the measured SPE amplitude distributions in this study.

Thus, for the purpose of the approximation of the amplitude distri-
butions experimentally measured in PMT photon detectors we use the
following equation:

𝑓 (𝑎;𝐝) =
∞
∑

𝑛=0

{

𝐺(𝑎, 𝑛; 𝜎eff )

[

𝑒−𝜇𝑞0(𝑛) +
∞
∑

𝑚=1
𝑃 (𝑚;𝜇)𝑇 (𝑛, 𝑚; 𝐭)

]}

. (36)

The set of parameters d includes 𝑠𝑐𝑎𝑙𝑒, 𝜎, 𝜇, 𝜉, and the vector
𝐭 = (𝜈1, 𝛼2, 𝜈2, 𝛼3, 𝜈3). The average multiplicity of the secondary electrons
produced by one photoelectron (average second stage gain) in this case
will be

𝜈 = 𝜈1(1 − 𝛼2 − 𝛼3) + 𝜈2𝛼2 + 𝜈3𝛼3. (37)

The list of parameters taking full advantage of the PMT spectra
approximation by Eq. (36) is given in Table 1. Parameter forms 𝜈2∕𝜈1,
𝛼3∕(1 − 𝛼2), and 𝜈3∕𝜈1 are used in the computations to simplify the fit
procedure as the limits on these parameter forms can be set universally.
The original equation’s symmetry between parameters 𝜈1, 𝜈2, and 𝜈3, and
between 𝛼1, 𝛼2, and 𝛼3 is broken in the fitting procedure to make it more
stable. The model parameters may be extracted from their table forms
unambiguously.

4. Implementation of the model

The fitting procedure was written in KUIP [22] macro language and
in FORTRAN within the framework of the Physics Analysis Workstation
(PAW) [23] package from CERN, with the use of the multiparametric
functional minimization routine MINUIT [24]. The software develop-
ment tools chosen are a bit outdated. However, the choice of KUIP as
the high-level programming language, operating effectively with the
data analysis objects, both interactively and in the batch mode, helped
significantly in the relatively quick development of the fit algorithm
and procedure. The FORTRAN code for the fitting function and the
KUIP macro language routines with the implementation examples are
available upon request. Currently, plans to export the code into the
Root [25] environment are under consideration.

Numerical evaluation of the function 𝑓 (𝑎;𝐝) in Eq. (36) is performed
by setting finite limits of summation over 𝑛 and 𝑚. The upper limit on
𝑚 in this study, at relatively low average photoelectron multiplicities
𝜇 ⪅ 3, is set at 16. The contribution of higher values of 𝑚 to the
sum is negligible at such conditions. The limits of summation over 𝑛
are selected dependent on the value of 𝑎 such that |𝑎 − 𝑛∕𝜈| < 8𝜎eff ,
neglecting the value of the Gaussian 𝐺(𝑎, 𝑛; 𝜎eff ) of Eq. (16) beyond
8 standard deviations. If the lower limit obtained from the above
condition is below zero, it is set at 𝑛 = 0. The values of the model
limiting parameters can be adjusted if needed for different conditions,
for example, higher values of 𝜇 may require using higher upper limit on
𝑚.

No formal proof of the convergence of the summation method has
been developed; however, an indirect verification is done every time
by checking that the calculated function is normalized to unit area in
accordance with Eq. (4), with accuracy much better than 1%.

As an independent verification of the implementation of the method,
we observe that the mean 𝑎 value for the 𝑝𝑚(𝑎) p.d.f. calculated using
Eq. (17) is ⟨𝑎⟩ = 𝑚 as expected for all 𝑚 ≥ 0.

In the fitting procedure, a raw measured amplitude distribution
d𝑁∕d𝑠 is normalized to have the integral (the sum of all channels in the

histogram) to be equal to one, representing the measured probability
distribution d𝑁∕d𝑠 p.d.f ., to be approximated by the model probability
density function 𝑓𝑃𝑀𝑇 (𝑠;𝐝). The first guess of the values of ⟨𝑠ped⟩ and 𝜎 is
made based on the Gaussian fit of the left side and top of the first peak in
the distribution, representing events with 𝑛 = 0. The average amplitude
⟨𝑠⟩ is then calculated together with the initial estimate of 𝜇 parameter
to obtain the initial value of the 𝑠𝑐𝑎𝑙𝑒 parameter, which allows us to
present the probability distribution as a function of normalized signal
amplitude 𝑎. After that, the data set is used in the process of finding
the best set of parameters describing it in the form of Eq. (36), using
MINUIT.

The stability of the multiparametric fitting procedure strongly de-
pends on the right choice of the parameters’ initial values. In the
following examples, different strategies were implemented to achieve
such stability, generally by splitting the process into several stages,
starting with the separate fit of the pedestal Gaussian to determine the
pedestal position and standard deviation, then setting the initial value
of 𝜇 by evaluating the portion of events in the pedestal region and using
the assumption that it is equal to exp(−𝜇), and then gradually increasing
the number of variable parameters in the consequent fits.

In the examples that included measurements of amplitude distribu-
tions from the same photodetector in identical conditions, only varying
the amount of light delivered to the detector per one measurement,
the procedure included the next layer of a ‘‘global fit’’. After the
best set of parameters describing each individual measurement was
found, the parameters related to the SPE amplitude distribution were
averaged across the set and fixed at those values. The remaining
‘‘external’’ parameters (such as 𝑠𝑐𝑎𝑙𝑒, 𝜇, and 𝜎) were set free for the
subsequent fit. The cycle of fitting procedures starting with releasing
all the parameters and making a new fit, averaging the SPE parameters
and fixing them at the new values, and then re-fitting only ‘‘external’’
parameters was performed several times until final convergence was
reached. The quality of the resulting approximation is an indication that
the parameters of the SPE distribution were found correctly and may
serve as values characterizing the device. These data sets illustrate the
‘‘predictive power’’ of the model, that is, its ability to predict how the
amplitude distributions would look in different experiments with the
same PMT (at different light conditions, and with different resolution of
the signal measurement, for example).

5. Examples

This section provides examples of practical applications of the model
used for parameterizations of real signal amplitude spectra measured in
various conditions and with different types of photomultipliers.

5.1. Tests of Hamamatsu H8500C-03 multianode PMT

Figs. 1, 2, and 3 illustrate the general quality of the model description
of the amplitude distributions measured on three different anodes of
the position sensitive Hamamatsu MAPMT H8500C-03, a 52 mm square
12-stage photomultiplier tube with 64 (matrix 8 by 8) pixels [26]. The
measurement was a part of the dedicated study of the SPE detection ca-
pabilities of this PMT and its performance in a high magnetic field [27].
The spectra from each anode were accumulated in several irradiation
conditions, corresponding to the range of 𝜇 from about 0.3 to 3. The
raw data sets were kindly presented to us by the Authors of Ref. [27]
for the analysis. Every spectrum was subjected to the two-level ‘‘global
fit’’ procedure as described in the previous section. The fitting function
is visibly following the data points nicely above the pedestal. The values
of 𝜒2∕𝑁𝐷𝐹 , or 𝜒2∕𝑛d as per [18], corresponding to the formal goodness-
of-fit statistical evaluators, are mostly determined by the quality of the
Gaussian approximation for the signal measurement system resolution
function in this experiment. At low-light setups, where the pedestal
events dominate, the non-Gaussian contributions to the shape of the
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Table 1
List of PMT model fit parameters.

Name Limits Brief description

𝑠𝑐𝑎𝑙𝑒 >0 – Average amplitude of SPE signals (channels ADC)
𝜎 >0 – Standard deviation of the pedestal fit (channels ADC)
𝜇 >0 – Average multiplicity of photoelectrons
𝜈1 >0 – Average multiplicity of the first gain component in (26)
𝛼2 [0, 1] – Portion of second gain component in (26)
𝜈2∕𝜈1 [0, 1] – Relative multiplicity of the second gain component in (26)
𝛼3∕(1 − 𝛼2) [0, 1] – Relative portion of third gain component in (26)
𝜈3∕𝜈1 [0, 1] – Relative multiplicity of the third gain component in (26)
𝜉 >1 – Average multiplicity at the second dynode

(a) H8500 MAPMT, anode #39, test setup at low light conditions corresponding
to 𝜇 = 0.306.

(b) H8500 MAPMT, anode #39, test setup at lower-medium light conditions
corresponding to 𝜇 = 0.869.

(c) H8500 MAPMT, anode #39, test setup at upper-medium light conditions
corresponding to 𝜇 = 1.653.

(d) H8500 MAPMT, anode #39, test setup at higher light conditions correspond-
ing to 𝜇 = 2.734.

Fig. 1. A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, anode #39, at ten light conditions, four of which are shown. The experimental data [27]
are shown as open circles with error bars, the fit function 𝑓𝑃𝑀𝑇 (𝑠; 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) is shown as a solid line, and the contributions to 𝑓𝑃𝑀𝑇 coming from events with zero, one, and more
photoelectrons are shown as areas under dashed lines with different types of hatch. The area corresponding to the SPE contribution uses horizontal lines as hatch type, and is highlighted.
Only two parameters, 𝜎 and 𝜇, are left variable in all final fits.

resolution functions increase the values of 𝜒2∕𝑛d, but do not disturb
significantly the SPE spectra parameterizations in this example.

We found that the best-fit parameters of the SPE amplitude distri-
butions, while different for different anodes, are close within statistical
errors for different irradiation conditions of one pixel (anode) of the
PMT. The data are described well in different light setups with the
same fixed set of parameters 𝜈1, 𝛼2, 𝜈2, 𝛼3, 𝜈3, 𝜉 of the SPE spectrum
𝑝1(𝑎), keeping variable only the parameter specifying the light (𝜇), and
one of the signal measurement parameters, 𝜎. The values of the fixed
parameters are shown in the plots with zero standard deviations. The
data sets allowed us also to keep the 𝑠𝑐𝑎𝑙𝑒 parameter fixed in all fits,
indicating to a good stability of the signal measurement system during
the measurements. To illustrate these observations better, the plots are
normalized such that the SPE contribution to the full spectra is shown
(as the dashed line above the highlighted and horizontally hatched area)
visually identical in each plot of the set. The SPE spectrum approxi-
mation extracted from the data in such a procedure may therefore be
considered as a characteristic of the photon detector (one of the anodes
of the MAPMT in this case).

This result demonstrates the predictive functionality of the model,
meaning that the SPE spectrum approximation measured in some
conditions may be used to evaluate the amplitude distributions from
this detector in different light conditions, and with different signal
measurement resolution.

Logarithmic scales in ordinate in Fig. 4 illustrate the quality of the
model description of the whole spectra as the sum of the partial terms
with 𝑚 from 0 to about 7–10.

5.2. Tests of ET enterprises 9823B PMT

Fig. 5 shows similar exercise with the amplitude spectra measured
on a very different PMT, ET Enterprises 5-in. 9823B tube; the data
were kindly provided to us by Hakob Voskanyan, Andrey Kim and Will
Phelps [28]. The statistical errors in the data set are small enough for
a stable and accurate multiparametric fitting procedure. The excellent
quality of the data made it possible to observe and measure the non-
Gaussian components in the pedestal distributions, and adjust the model
by introducing and parameterizing these components of the experi-
mental signal measurement distribution function, to achieve acceptable
model description of the full data set.

We did observe the slight asymmetry in the pedestal function that
could be modeled by introducing an exponential noise component in
addition to the standard Gaussian form. Such noise may be modeled ad
hoc as an independent random value 𝑎noise contributing with a certain
probability to the signal value 𝑎 in any event, and distributed according
to the exponential

𝑓noise(𝑎; 𝜏) =
1
𝜏
exp

(

− 𝑎
𝜏

)

, (38)
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(a) H8500 MAPMT, anode #45, test setup at low light conditions corresponding
to 𝜇 = 0.256.

(b) H8500 MAPMT, anode #45, test setup at lower-medium light conditions
corresponding to 𝜇 = 0.728.

(c) H8500 MAPMT, anode #45, test setup at upper-medium light conditions
corresponding to 𝜇 = 1.383.

(d) H8500 MAPMT, anode #45, test setup at higher light conditions correspond-
ing to 𝜇 = 2.285.

Fig. 2. A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, similar to the set shown in Fig. 1, but on different anode #45. Ten measured distributions
participated in the ‘‘global fit’’ procedure; four of them are shown.

(a) H8500 MAPMT, anode #61, test setup at low light conditions corresponding
to 𝜇 = 0.388.

(b) H8500 MAPMT, anode #61, test setup at lower-medium light conditions
corresponding to 𝜇 = 0.827.

(c) H8500 MAPMT, anode #61, test setup at upper-medium light conditions
corresponding to 𝜇 = 1.636.

(d) H8500 MAPMT, anode #61, test setup at higher light conditions correspond-
ing to 𝜇 = 2.742.

Fig. 3. A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, similar to the set shown in Fig. 1, but on different anode #61. Nine measured distributions
participated in the ‘‘global fit’’ procedure; four of them are shown.

with the parameter 𝜏 describing the exponential (temperature-like)
noise spectrum.

Adding such a random noise contribution to the model involves the
convolution between the model function (36) and the exponential (38).
Using the properties of the convolution algebra, it can be implemented
by the substitution of the Gaussian form 𝐺(𝑎, 𝑛; 𝜎eff ) in Eq. (36) with its
convolution with the exponential noise in the form

(1 − 𝛽)𝐺(𝑎, 𝑛; 𝜎eff ) + 𝛽𝐺𝑒𝑚(𝑎, 𝑛; 𝜎eff , 𝜏), (39)

wherein the parameter 𝛽 is the probability for the noise event to
happen in every measurement, and the function 𝐺𝑒𝑚(𝑎, 𝑛; 𝜎eff , 𝜏) is
the convolution of the Gaussian with the exponential (known also as
exponentially modified Gaussian distribution, see Ref. [29]):

𝐺𝑒𝑚(𝑎, 𝑛; 𝜎eff , 𝜏) = 1
2𝜏

exp

(

𝜎2eff
2𝜏2

−
𝑎 − 𝑛∕𝜈

𝜏

)

⋅ erfc

[

𝜎2eff∕𝜏 − (𝑎 − 𝑛∕𝜈)
√

2𝜎eff

]

, (40)
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(a) H8500 MAPMT, anode #45, test setup at low light conditions corresponding
to 𝜇 = 0.256.

(b) H8500 MAPMT, anode #45, test setup at lower-medium light conditions
corresponding to 𝜇 = 0.728.

(c) H8500 MAPMT, anode #45, test setup at upper-medium light conditions
corresponding to 𝜇 = 1.383.

(d) H8500 MAPMT, anode #45, test setup at higher light conditions correspond-
ing to 𝜇 = 2.285.

Fig. 4. Same as in Fig. 2, but using logarithmic scale in ordinate to illustrate the contribution of higher 𝑚 components in the spectra.

(a) ET Enterprises 9823B PMT, test setup at low light conditions corresponding
to 𝜇 = 0.496.

(b) ET Enterprises 9823B PMT, test setup at lower-medium light conditions
corresponding to 𝜇 = 0.991.

(c) ET Enterprises 9823B PMT, test setup at upper-medium light conditions
corresponding to 𝜇 = 1.916.

(d) ET Enterprises 9823B PMT, test setup at higher light conditions correspond-
ing to 𝜇 = 3.992.

Fig. 5. A set of amplitude distributions measured with an ET Enterprises 9823B photomultiplier at eighteen light conditions, four of which are shown. The experimental data [28] are
shown as open circles with error bars, other notation and the features in the plots are the same as in Fig. 1. The values of 𝜏 parameter in the plots are dimensionless and given in the
units of 𝜎. Only the parameters related to the performance of the signal analysis system (𝑠𝑐𝑎𝑙𝑒, 𝜎, 𝛽, and 𝜏), and also the light intensity parameter 𝜇 are left variable in the final fits.

where

erfc(𝑥) ≡ 1 − erf(𝑥) = 2
√

𝜋 ∫

∞

𝑥
exp

(

−𝑡2
)

d𝑡. (41)

Adding random exponential noise contributions to every measure-
ment in this extension of the model eliminates the property of the
system resolution function 𝑅(𝑎) to be non-biased, violating the basic
assumption (e) in the model. The correspondingly modified relation of
Eq. (7) between the values of the 𝑠𝑐𝑎𝑙𝑒, ⟨𝑠⟩, and 𝜇 parameters that should

be applied in the minimization procedure in this case is as follows:

𝑠𝑐𝑎𝑙𝑒𝛽𝜏 = (⟨𝑠⟩ − 𝛽𝜏)∕𝜇. (42)

The results of application of such approach to the data are illustrated
in Fig. 5. The set of 18 measurements at different light intensities in
the range of 𝜇 values from about 0.5 to about 4.0 was approximated
using the identical SPE spectrum defined by the parameters 𝜈1, 𝛼2, 𝜈2,
𝛼3, 𝜈3 and 𝜉. The signal measurement system parameters 𝑠𝑐𝑎𝑙𝑒, 𝜎, 𝛽 and
𝜏 were left variable in the global fit procedure to allow for their slight
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(a) H8500 MAPMT, anode #39. (b) H8500 MAPMT, anode #45.

(c) H8500 MAPMT, anode #61. (d) ET Enterprises 9823B PMT.

Fig. 6. Solid lines show the 𝑝1(𝑎) p.d.f. corresponding to the amplitude spectra of a single photoelectron as determined in the plots shown in Figs. 1–3 (panels a–c), and Fig. 5 (panel d).
The trinomial components of the functions are shown by the dash-dotted lines.

modification between different measurements, but their variations are
quite small, showing the stability of the test setup. The only major
variable parameter in the fitting procedure is 𝜇, characterizing average
number of photoelectrons in each test. The goodness-of-fit evaluator
𝜒2∕𝑛d is in the range between 1.0 and 1.1 in all 18 approximations,
indicating to a model description of the data close to a theoretically
perfect.

5.3. Extracted SPE spectra

Fig. 6 further illustrates the inner structure of the SPE spectra
extracted from the data sets shown in Figs. 1–3 and 5. The 𝑝1(𝑎) p.d.f. are
drawn as functions of the normalized signal amplitude 𝑎, together with
their three Poissonian components defined by the vectors of parameters
𝐭. The 𝑝1(𝑎) functions are shown convoluted with the corresponding
effective signal measurement Gaussians 𝐺(𝑎, 𝑛; 𝜎eff ) in Fig. 6a–c, and
convoluted with the modified signal measurement function of Eq. (39)
in Fig. 6d. The parameters for the signal measurement functions used
were averaged over the test light conditions.

The three components of the 𝑝1(𝑎) functions originate from the three
elementary Poissonian constituents of the discrete 𝑞1(𝑛) distributions, as
defined in Eq. (26), and are converted to the continuous 𝑎 scale by the
same convolutions applied to each component separately, similar to how
it is done in Eq. (17). The components add up to fit the complicated SPE
amplitude distribution functions that would be difficult to approximate
using a smaller number of parameters.

Good normalized signal amplitude resolution of the measurement
system for the data shown in Fig. 6d allowed us to clearly distinguish be-
tween the events with 𝑛 = 0 and events with 𝑛 > 0 in the SPE spectrum,
that is, to evaluate according to the model the portion of events when
a photoelectron fails to generate any response from the PMT. Portion
of such events in the 𝑝1(𝑎) function may be linked to the ‘‘collection
efficiency’’ characteristic reported by the PMT manufacturers, see, for
example, Ref. [16], page 45.

5.4. Tests of Hamamatsu H8500 and H12700 MAPMTs

The following example illustrates some of the results of the study of
large number (430) of the Hamamatsu H8500 and H12700 MAPMTs,
obtained in the process of PMT selection for the new RICH detector,

which is presently underway at JLab [1,30]. As opposed to H8500,
the new 10-stage H12700 series of MAPMTs from Hamamatsu [26] is
designed specifically to suit better for the applications requiring reliable
single photoelectron detection, such as RICH detectors.

All the MAPMTs were tested in the conditions of a relatively low
light (three illumination conditions identified as ‘‘OD54’’, ‘‘OD50’’ and
‘‘OD46’’, corresponding to the parameters of average 𝜇 of about 0.06,
0.13, and 0.20, and at four values (1000, 1050, 1075 and 1100 V) of
the operational high voltage (HV) applied.

The total number of measured amplitude distributions recorded and
analyzed is about 340 thousand. The signal measurement system did
not provide perfect Gaussian pedestal amplitude distributions during
these tests. While the pedestal shapes were very close to Gaussian
form, the small statistical errors in the peak made the fitting procedure
very sensitive to the small distortions, and thus unstable. To avoid
parameterization instabilities caused by the discrepancies between the
ideal Gaussian pedestal shape and the measured pedestal peaks, in
every spectrum the statistical errors in the data points constituting the
pedestal peaks were increased and re-normalized such that the peaks
could be approximated by the Gaussian functions with the new modified
(𝜒2∕𝑛d)Gaussian equal to one. That way during the multiparameter fitting
procedure the disturbed pedestal peak shapes did not influence the main
𝜒2 of the full spectrum minimization. Essentially only pedestal position
and effective Gaussian width were used in the main fitting procedure,
not details of the shape.

The parameters of the SPE spectrum for each of the 27,520 anodes
were obtained using the ‘‘global fit’’ procedure. The SPE parameters
were averaged over the runs with different illumination conditions and
fixed in final fits.

Fig. 7 shows the characteristic examples of the spectra measured on
one of the central anodes belonging to a MAPMT H12700 (left panels)
and to a MAPMT H8500 (right panels) at four different applied high
voltages from 1000 to 1100 V, together with the model approximations.

Each plot shows the quality of the overall fit of the data by the
model function, mostly defined by the SPE contribution at such low-
light test conditions. The significant increase of the 𝑠𝑐𝑎𝑙𝑒 parameter
with the increase of the applied high voltage may be seen clearly,
corresponding to the well-known dependence of PMT gains on the
applied high voltage. Notice that the extracted values of 𝜇 parameter
are quite stable and practically do not depend on HV. The H12700
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(a) Hamamatsu H12700 MAPMT GA0133, HV = 1000 V. (b) Hamamatsu H8500 MAPMT CA7782, HV = 1000 V.

(c) Hamamatsu H12700 MAPMT GA0133, HV = 1050 V. (d) Hamamatsu H8500 MAPMT CA7782, HV = 1050 V.

(e) Hamamatsu H12700 MAPMT GA0133, HV = 1075 V. (f) Hamamatsu H8500 MAPMT CA7782, HV = 1075 V.

(g) Hamamatsu H12700 MAPMT GA0133, HV = 1100 V. (h) Hamamatsu H8500 MAPMT CA7782, HV = 1100 V.

Fig. 7. A set of amplitude distributions measured at four high voltages on one Hamamatsu H12700 MAPMT (left panels), and one Hamamatsu H8500 MAPMT (right panels), shown for
one of the central anodes (#28) in each MAPMT at the medium ‘‘OD50’’ light condition. The notation and other features in the plots are the same as in Fig. 1. Only the set of parameters
related to the performance of the signal analysis system (𝑠𝑐𝑎𝑙𝑒 and 𝜎), and also the light intensity parameter 𝜇 are left variable in the final fits.

MAPMTs generally exhibit a more prominent high-𝜈 component of the
SPE spectrum compared with the H8500 tubes.

The model-approximated SPE spectra measured for several anodes
of the sample MAPMTs, including those corresponding to the set of
plots from Fig. 7, are shown in Fig. 8, function of the normalized
amplitude 𝑎. Despite the strong dependence of the 𝑠𝑐𝑎𝑙𝑒 parameter on
the applied high voltage observed earlier, the shapes of the SPE spectra
function of 𝑎 are stable and only slightly depend on the HV, possibly
due to the changes in the average multiplicity 𝜈 of the second-stage
electrons knocked from the first dynode. Qualitatively this result may be
understood such that as energy of the photoelectron acceleration from
the photocathode to the first dynode increases at higher voltages, the
average number of the knocked-out electrons increases slightly. Such
pattern is observed in all anodes and all photomultipliers in the study.

The variability of the SPE parameters between different anodes in
each MAPMT is found to be quite significant. Also significant is the

difference between average SPE parameters for H8500 and H12700
MAPMT types. Fig. 9 illustrates this statement by showing some of the
‘‘PMT Passport’’ plots for the above two MAPMT example devices. Model
approximation parameters were obtained for every anode independently
using the ‘‘global fit’’ procedure, and plotted as a function of the anode
number for every photomultiplier. Model parameters 𝑠𝑐𝑎𝑙𝑒, 𝜇, and the
derived values of 𝜈average and 𝜀 on the left panels in Fig. 9 are obtained for
the H12700 example MAPMT, and corresponding right panels show the
results for the H8500 MAPMT. The SPE efficiency evaluation parameter
𝜀 will be discussed further in the text.

The top panels (a) and (b) in Fig. 9 illustrate typical variable patterns
of the 𝑠𝑐𝑎𝑙𝑒 parameters as a function of anode number. The plots
show all twelve test conditions that the MAPMTs were subjected to
in this study, namely, four HV values times three light conditions.
Quite striking feature of the model approximation is that the extracted
𝑠𝑐𝑎𝑙𝑒 parameters do not depend on the light conditions to a very high
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(a) Hamamatsu H12700 MAPMT GA0133, anode #28. (b) Hamamatsu H8500 MAPMT CA7782, anode #28.

(c) Hamamatsu H12700 MAPMT GA0133, anode #32. (d) Hamamatsu H8500 MAPMT CA7782, anode #32.

(e) Hamamatsu H12700 MAPMT GA0133, anode #57. (f) Hamamatsu H8500 MAPMT CA7782, anode #57.

(g) Hamamatsu H12700 MAPMT GA0133, anode #64. (h) Hamamatsu H8500 MAPMT CA7782, anode #64.

Fig. 8. Each panel shows the SPE p.d.f., measured using the ‘‘global fit’’ procedure at four high voltage values. Four anodes are shown for both types of MAPMTs, corresponding to the
anode positions at the center, at the center of the edge, and at the two corners of the MAPMT’s face. All plots show the 𝑝1(𝑎) p.d.f. assuming artificially small normalized experimental
measurement resolution 𝜎∕𝑠𝑐𝑎𝑙𝑒 = 0.02.

degree of accuracy, such that those differences practically cannot be
resolved on the plots. The dependence of the 𝑠𝑐𝑎𝑙𝑒 parameter on HV
is on the other hand quite clear and corresponds to the well-known
characteristic exponential dependence of output amplitudes (PMT gain)
on high voltage. The data sets, measured at different high voltages and
plotted as a function of the anode number, look essentially parallel in
logarithmic scale in the plots, meaning that their difference may be
approximately attributed to multiplication by a factor.

Panels (c) and (d) in Fig. 9 are complementary to the previous two
in a sense that they show the stability of the model in determining the
model parameter 𝜇 during the varying test conditions. Naturally 𝜇 must
be proportional to the average light delivered during the test, and ideally
it would not depend on the HV applied. These regularities are generally
observed in the data. As the irradiation of the MAPMT face was uniform,
𝜇 measured in each of the 64 channels change in sync with changing
light conditions. The dependence of the 𝜇 parameter on the high voltage
applied is very minimal, and possibly could be explained by such effects

as the tiny increase in the probability of photoelectron emission in
higher gradients of electric fields in the photocathode region, or by
better focusing of the photoelectrons at higher voltages. However, these
hypotheses were not further investigated in this work.

Panels (e) and (f) in Fig. 9 show the 𝜈 derived value as defined in
Eq. (37), function of the anode number for the sample MAPMTs. The
values of 𝜈 are averaged over the three light conditions at each of the
HV settings using the ‘‘global fit’’ procedure. The difference in 𝜈 values
between the H12700 and H8500 MAPMT models is quite significant and
is observed in other MAPMTs through the whole data set. Most likely
explanation of this observation is the difference in the design of these
MAPMTs. Other typical feature that could be seen in these two panels is
the relatively weak, but noticeable, dependence of 𝜈 on the high voltage
applied. Such dependence of 𝜈 on HV may be qualitatively understood as
increasing probability of knocking out electrons from the first dynode
at higher voltages due to higher energy that a photoelectron acquires
when accelerating from the photocathode to the first dynode.
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(a) Parameter 𝑠𝑐𝑎𝑙𝑒, proportional to the overall PMT gain at each anode. H12700
MAPMT ‘‘GA0133’’.

(b) Same as in (a), but for the H8500 MAPMT ‘‘CA7782’’.

(c) Parameter 𝜇, proportional to the light intensity at each anode. H12700
MAPMT ‘‘GA0133’’.

(d) Same as in (c), but for the H8500 MAPMT ‘‘CA7782’’.

(e) Average number of the second-stage electrons knocked out by one photoelec-
tron, for each anode. H12700 MAPMT ‘‘GA0133’’.

(f) Same as in (e), but for the H8500 MAPMT ‘‘CA7782’’.

(g) Efficiency 𝜀 of one photoelectron detection at each anode. H12700 MAPMT
‘‘GA0133’’.

(h) Same as in (g), but for the H8500 MAPMT ‘‘CA7782’’.

Fig. 9. MAPMT passport plots: a selection of the model parameters 𝑠𝑐𝑎𝑙𝑒, 𝜇, and the derived values of 𝜈 and 𝜀, evaluated using the ‘‘global fit’’ procedure for the two sample devices,
Hamamatsu H12700 MAPMT ‘‘GA0133’’ (left panels), and H8500 MAPMT ‘‘CA7782’’ (right panels), plotted as functions of the anode numbers of these MAPMTs. All twelve data sets are
shown in each plot, corresponding to the three illumination conditions measured at each of four different applied high voltages.

Panels (g) and (h) in Fig. 9 illustrate one of the possible final goals
of such studies: evaluate efficiency 𝜀 of the photoelectron detection
by the photodetectors. Here 𝜀 is defined as the probability of events
distributed according to the evaluated SPE amplitude distributions 𝑝1(𝑠)
to have their signal amplitude 𝑠 above 20 channels ADC or QDC as
recorded by the signal measurement system during these tests. The value
of 𝜀 generally varies from anode to anode, as shown in the plots in
correlation with the anode gain, which in turn depends on the high
voltage applied. The efficiency is systematically higher for the H12700
MAPMT series, despite generally higher 𝑠𝑐𝑎𝑙𝑒 parameters observed for
the H8500 MAPMTs.

The overall features of the massive analyzed MAPMT data set are
presented in the following plots.

Fig. 10. Distribution of the goodness-of-the-fit evaluator 𝜒2∕𝑛d on the number of model
parameterizations. Dashed line shows the H8500 set, solid line—the set of fits for the
H12700 MAPMTs. The distributions are normalized to equal areas in the plot.
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(a) Distributions of 𝑠𝑐𝑎𝑙𝑒 parameter for the two MAPMT data sets. (b) Light-averaged distributions of 𝑠𝑐𝑎𝑙𝑒 parameter for the two MAPMT data
sets, in the two HV settings.

(c) Distributions of 𝜇 parameter for the two MAPMT data sets. (d) HV-averaged distributions of 𝜇 parameter for the two MAPMT data sets, in
the two light conditions.

(e) Distributions of 𝜈 value for the two MAPMT data sets. (f) Light-averaged distributions of 𝜈 value for the two MAPMT data sets, in the
two HV settings.

(g) Distributions of the light detection efficiency value 𝜇𝜀 for the two MAPMT
data sets at HV = 1050 V.

(h) Same as (g) for the HV settings at 1000 V and 1100 V.

Fig. 11. Distributions of 𝑠𝑐𝑎𝑙𝑒 and 𝜇 parameters, and 𝜈 and 𝜇𝜀 derived values on the number of model parameterizations. Dashed lines show the H8500 data set, and solid lines the
set of parameters for the H12700 MAPMTs. The distributions are normalized to equal areas in each plot. The selections of the evaluated parameter sets included in the distributions are
indicated on top of the panels.

Fig. 10 shows the distributions of the goodness-of-fit evaluator 𝜒2∕𝑛d
for about 60 000 parameterizations for the H8500 MAPMTs in this
study, and about 275 000 parameterizations for the H12700 MAPMT
series. The 𝜒2∕𝑛d value is taken from the last stage of the ‘‘global fit’’
procedure in which the six parameters characterizing the SPE spectra
were averaged and fixed for the 3 setups at different light conditions,
and other variables were optimized to minimize the 𝜒2. As it was
explained above, the values of statistical errors in the bins around the
pedestal in the raw spectra were artificially adjusted to make the fit
insensitive to the slightly non-Gaussian shape of the measured peak and
avoid fit instabilities. The 𝜒2∕𝑛d distributions are normalized to equal

areas under the curves. While both distributions indicate to a reasonably
good quality of the fits, the H8500 series is closer to being ‘‘theoretically
perfect’’, and the H12700 series distribution has more instances of the
fits with a somewhat less than perfect quality.

Fig. 11 presents distributions of 𝑠𝑐𝑎𝑙𝑒 and 𝜇 model parameters, and
the derived values of 𝜈 and 𝜇𝜀 for the analyzed data sets. Dashed lines
show the H8500, and solid lines the set of parameters for the H12700
MAPMTs. The distributions are normalized to equal areas in the plots.
The selections of the parameter sets included in the distributions are
indicated on top of the panels.
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Fig. 12. Distributions of the stability evaluator for the 𝑠𝑐𝑎𝑙𝑒 parameter, corresponding to
the relative statistical error in the extracted value of the 𝑠𝑐𝑎𝑙𝑒 for the two MAPMT data
sets. See text for details.

Fig. 13. Distributions of the stability evaluator for the 𝜇 parameter, corresponding to
the combination of the relative statistical error in the extracted value of the 𝜇, and the
observed weak dependence of 𝜇 on the applied HV, for the two MAPMT data sets. See text
for details.

Fig. 11a shows the distributions of 𝑠𝑐𝑎𝑙𝑒 parameter measured for all
anodes of H8500 and H12700 MAPMTs at 1050 V. As it has already
been illustrated in the panels (a) and (b) of Fig. 9, the extracted
𝑠𝑐𝑎𝑙𝑒 parameters do not depend on the light conditions to a very high
degree of accuracy. The distributions of the 𝑠𝑐𝑎𝑙𝑒 parameter in Fig. 11a
accumulated for the different light conditions are practically identical
and are superimposed on top of each other in the plot. While the
spread of the values is quite broad, the H8500 set exhibits 𝑠𝑐𝑎𝑙𝑒 values
on average about 20% larger than the H12700 set at the same HV.
Apparently, as compared to the H8500 MAPMT, the lower number of the
amplification stages in the H12700 devices is almost compensated by the
new design features allowing greater amplification at each stage. This
is further illustrated in Fig. 11b where the 𝑠𝑐𝑎𝑙𝑒 parameter distributions
are shown for HV = 1000 V and HV = 1100 V, averaged over the
light conditions, and plotted using the logarithmic scale in abscissa to
better see the similarities between the distributions at different applied
voltages.

Fig. 11c shows the distributions of 𝜇 parameter measured for all an-
odes of H8500 and H12700 MAPMTs at the intermediate light condition
‘‘OD50’’, and all high voltages. The distributions indicate on a rather
small (<10%) difference in the photoefficiency and/or photoelectron
collection ability between the two types of MAPMT, showing the slight
advantage for the H12700 devices. It may also be seen in the plot, that
the evaluated parameters 𝜇 practically do not depend on HV applied.
This observation illustrates the good level of factorization between the
𝑠𝑐𝑎𝑙𝑒 and 𝜇 parameters of the model. The values of these parameters
evaluated in one set of the test conditions are applicable to the tests
at different HV and light. While the stability of the extracted 𝑠𝑐𝑎𝑙𝑒
parameter is observed to be within the small statistical errors of under
1%, the distributions on 𝜇 may indicate on the presence of a slight (1%–
2%) dependence of 𝜇 on the applied HV. However, this small effect was
difficult to evaluate and analyze in more detail. Averaging over the sets
of tests at different HV allowed us to further illustrate the differences
between the H8500 and H12700 data in the distributions on 𝜇 measured
at different light conditions, presented in Fig. 11d.

Fig. 11, panels (e) and (f) are similar to panels (a) and (b) in the
same figure, but showing the derived value of the 𝜈 parameter for the
same sets of conditions. According to the model, the set of the SPE
parameters of the photon detector do not depend on the light conditions
during the tests. This condition is taken into account during the ‘‘global
fit’’ procedure, leading to the 𝜈 independence of the light conditions.
Thus, Fig. 11e, f illustrate the difference of the derived 𝜈 values between
the H8500 and H12700 MAPMTs, and also its dependence on the HV
applied. While the HV-dependence is relatively week, the difference
between the two types of MAPMTs is quite dramatic, indicating that
the average number of the second-stage electrons knocked out of the
first dynode is almost twice as large in a H12700 MAPMT compared to
H8500 in the same conditions.

Panels (g) and (h) in Fig. 11 illustrate the comparison between the
H8500 and H12700 sets of MAPMTs in terms of their ultimate efficien-
cies of detecting light. At the same signal thresholds in channels ADC,
H12700 MAPMTs have some advantage in the probability of detecting
light, in spite of generally smaller SPE signals (the 𝑠𝑐𝑎𝑙𝑒 parameter). The
advantage is due to a somewhat larger photon conversion efficiency (the
𝜇 parameter), and better shapes of the SPE spectra with much larger
𝜈 value for H12700 devices, corresponding also to a better collection
efficiency for them.

Figs. 12 and 13 illustrate the levels of relative stability achieved in
the evaluation of the major SPE parameters 𝑠𝑐𝑎𝑙𝑒 and 𝜇, by plotting the
ratios of individually evaluated parameters to the values of the same
parameters averaged over the measurements in different conditions, in
which the model ideally should give the same values (𝑠𝑐𝑎𝑙𝑒 measured in
the three light conditions in the case of Fig. 12, and 𝜇 measured at four
values of applied HV in the case of Fig. 13). While the distribution of the
stability evaluator for the 𝑠𝑐𝑎𝑙𝑒 parameter 𝑅𝑠 = 𝑠𝑐𝑎𝑙𝑒∕⟨𝑠𝑐𝑎𝑙𝑒⟩OD-averaged
is indeed ultimately good (the spread is about 0.5% FWHM), the
corresponding spread in the distribution of 𝑅𝜇 = 𝜇∕⟨𝜇⟩HV-averaged is
about 4% FWHM. The latter observation may indicate, apart from the
statistical differences between the parameters, to an additional weak
dependence of the average number of photoelectrons 𝜇 on the applied
high voltage.

The extracted SPE characteristics for each anode in the whole studied
set of multianode photomultipliers were stored in a general MAPMT
parameter database. The accumulated data will facilitate and improve
the detector selection process, and will help to model the detector
response and efficiency. The SPE spectral functions extracted in such
analysis may serve as objective internal characteristics of each photon
detector (each anode of a MAPMT in this case) at an abstract level,
independent of the test conditions. For an extended experimental setup,
the set of such functions describing each detector may be used to
evaluate overall detector performance in current working conditions
that could be different from the test environment.

6. Conclusion

The new computational model for description of the photomultiplier
response functions has been developed, implemented, and tested in
real applications. Important features of the model include the ability
to approximate the true single-photoelectron spectra from different
photomultiplier tubes with a variety of parameterized spectral shapes,
reflecting the variability in the design and in the individual parameters
of the detectors. The new techniques were developed in the process of
building the model, such as the method of decomposition of the SPE
spectra into a series of elementary Poisson probability density functions,
and the use of convolution algebra to build the multi-photoelectron
amplitude distributions describing measured spectra.

The ‘‘predictive power’’ of the model has been tested by demonstrat-
ing that the SPE spectral parameters, obtained in the real measurements,
may describe well the amplitude distributions measured at different
levels of irradiation of the same photodetector. Thus, the model allowed
us to extract the characteristic parameters of the devices independently
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of the test measurement conditions. In that way the set of parameters
obtained in one or several test runs at certain running conditions could
serve to obtain predicted detector response and efficiency for a wider set
of running conditions, for a varying level of light during the real runs,
and/or for a different amplitude resolution of the measurement system.

The SPE spectral parameterization information in experimental
physics or industrial photon detector setups may be utilized to make an
educated selection of the devices that would work best for a particular
purpose, make choices for the characteristics of the readout electronics
necessary for a particular setup, and create new software tools simulat-
ing expected behavior of the photon detectors in real installations for
use in the data analysis procedures.
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