ML for tracking G.Gavalian Feb. 12, 2019

Reducing Data

lacksquare

Type of Events

Events in the File

Events with Hit Based Tracks

Events with Time Based Tracks

Identifying events where there are no tracks, can reduce data size by 30%.

Count	Percent
144076	100%
119867	83%
103929	72%

High Luminosity

Combinatorics forces tracking code to run through many tracks to find real ones

Four track combinations were considered where there are none.

High Luminosity

Four track combinations were considered where there is one.

Benefits of ML

- Data Reduction:
 - If the events with no tracks are identified during writing of the data, the data volume will be reduced significantly.
- Tracking Speed:
 - If we can match crosses to the right tracks, it will eliminate need for combinatorics.
 - Especially for high luminosity runs this will reduce tracking time for up to 40%.
- Tracking Speed (more):
 - If we can calculate state vectors from the pattern in the drift chamber, this will reduce number of iterations needed for Kalman-Filter.
 - Potentially very big gain in speed (don't have estimates yet)

• Pilot project

- We can start with pre-trained VGG16 architecture to identify tracks in our drift chambers.
- reduce the data sample that tracking has to work with.
- Using Adversarial Neural Network we can clean up the hits that belong to the tracks: \bullet
- reducing number of combinatorics.
- Extension:
 - \bullet

VGG16

Use regression network on the top to calculate track parameters and pass it to tracking code to minimize Kalman-Filter iterations.

7 x 7 x 512 28 x 28 x 512 x 14 x 512 1 x 1 x 4096 1 x 1 x 1000 convolution+ReLU max pooling fully nected + ReLU softmax

BACKUP SLIDES

noise
:um. 🗹 Truth
or ADC Value
0.8 1

