

Threshold J/ψ Photoproduction as a Probe of Nuclear Gluon Structure

Jackson Pybus April 3, 2024

Laboratory for Nuclear Science

Nuclear and parton dynamics are linked

We describe nuclei as collections of protons and neutrons...

... but the reality is more complicated (quarks + gluons)

EMC Effect: Modification of quark content in nuclei

Fewer high-momentum quarks in nuclei

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

But what about the gluon content?

Quark sector: EMC Effect

Gluon sector:

J/ψ is key probe of gluon physics

---*J/ψ*

 J/ψ is "color dipole", interacts by exchanging gluons

Sensitive to gluon densities and spatial distributions within the target

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

7

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

 $\frac{d\sigma(\gamma A \to J/\psi pX)}{dt d^3 p_{miss} dE_{miss}} = v_{\gamma i} \cdot \frac{d\sigma}{dt} (\gamma p \to J/\psi p) \cdot S(p_{miss}, E_{miss})$

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

Gravitational form factor

Hall D SRC-CT Experiment

- Dedicated high-energy photonuclear measurement
- ~40-day measurement of targets ${}^{2}H$, ⁴He, ¹²C
- 10.8-GeV electron beam tagged coherent bremsstrahlung
- Final-state (e^+e^-p) detected in largeacceptance GlueX spectrometer

Invariant mass shows $J/\psi \rightarrow e^+e^-$ decay

Invariant mass shows $J/\psi \rightarrow e^+e^-$ decay

Energy-averaged cross section across nuclei

Kinematics give insight into reaction mechanisms

Lightcone momentum fraction $\alpha_{miss} =$

Smaller-size proton could enhance large- α cross section

Modified gluon radius: $\langle r \rangle_g \rightarrow (1 + Bv) \langle r \rangle_g$

Conclusions

- New photonuclear measurement gives first measurement of incoherent J/ψ production at and below threshold energy
- Kinematic distributions indicate possible modification of gluons in bound proton
- Proposed high-statistics measurement PR12-23-009 will shine more light on mechanisms of large-x nuclear gluons

