FCAL Efficiency With "Tagged" $\omega \rightarrow \pi^+ \pi^+ \pi^-$

Jon Zarling

Intro

- Want to verify MC and data efficiencies match in FCAL:

 As function of photon θ (integrated over all energies)
 As function of photon E (integrated over all θ, φ in FCAL)
- Options:
 - Charged tracks to FCAL? (resolution, PID tricky, etc.)
 - O Use exclusive channel with "tagged" final state photon
- $\omega \rightarrow \pi^+ \pi^- \pi^0$:

Large cross section

- o Having proton, π^+ , and π^- helps with exclusivity, vertexing
- \circ Result: fairly clean, well resolved even with a missing π^0 photon

2017 Data

- Starts off too messy to be workable, but can be cleaned up easily enough
- Some background and η and ϕ also in topology
- Topology: $\pi^+\pi^-\gamma(\gamma)p$

Running Over MC/Data (reference)

- Use ReactionFilter plugin!!
 - o (there is a bug with missing photons topologies if you try to use your own separate plugin)
- Options to ReactionFilter I use:
 - o No extra tracks
 - o 1 C fit to constrain missing photon mass == 0
 - o Don't constrain π^0 mass (default is to constrain)
 - o Don't constrain vertex
 - Two out-of-time beam bunches before and after
- Word of caution:
 - o 1 C fit to constrain missing photon works great
 - o π^0 mass constraint, vertex tricky to work with... (smears tails)

Additional Event Selection (reference)

- Fairly tight π^0 missing mass cut (post-kinfit) • (0.11 < recoil against $\pi^+\pi^-$ p < 0.16 GeV)
- All tracks must have hits in TOF/BCAL/FCAL for PID timing
- Loose χ^2 cuts on:
 - Tracking
 - Track timing
 - o Track dE/dx
- For now: 8.2 < beam E < 8.8 GeV

Basic idea

- Data driven method
- Single photon efficiency is given by

 $\circ \epsilon = \frac{\omega \rightarrow 3\pi \text{ yield, both } \pi^0 \text{ photons found}}{\omega \rightarrow 3\pi \text{ yield, one or both } \pi^0 \text{ photons found}}$

- Binned in $\theta_{(\gamma)}$ or $E_{(\gamma)}$ as statistics allow
- Want to decouple from detector resolution as best we can (reduce/eliminate cut dependence)
 This is the tricky part!
- I use two parameterizations as way to cross check results

Method 1: Fit to MM Spectrum

Numerator

- Exactly two neutral candidates
 - Candidates pass loose π^0 mass cut
- Loose $\Delta \phi$ cut
 - $\pi^+\pi^-\gamma\gamma$ should be opposite proton

1-2 neutral candidates

GLUE

 ω yields: 3 gaussian signal, floating parameters 2nd order polynomial background

Method 2: Fit to Invariant Mass and "Inefficiency"

 $\epsilon = \frac{inv mass yield}{inv mass yield + inefficient}$

"Inefficient"

 Only one photon found, no candidate for second

 ω yields: 3 gaussian signal, floating parameters 2nd order polynomial background

Numerator

Initial Comparisons

- 2017 data:
 - Runs 30274-30600
 8.2-8.8 GeV beam E
- MC sample:
 - o Genr8 signal MC: not a ton of physics input
 - o 8.5 GeV fixed beam E
- MC sample does a reasonable matching photon kinematics
 - Further refinement of MC sample may be needed

Missing Photon Kinematics

• In mass range of ω

Blue: data Red: signal MC

Initial Efficiencies: Energy Dependence

Blue: data Red: signal MC

GLUE

Filled circles: method 1 Open circles: method 2

Initial Efficiencies: Energy Dependence

Blue: data Red: signal MC

GLUE

Filled circles: method 1 Open circles: method 2

Conclusions So Far

- No strong conclusions yet
 - $_{\rm O}$ Difference in efficiency as function of θ could just be due to slightly different kinematics
 - $_{\rm O}$ Difference in energy could just be reflection of θ differences
 - $_{\rm O}$ Need to generate more physical ω sample or reweight MC
- Efficiency appears much lower than we might expect from physical response alone... why?

Photon Gun MC

- Simplest thing we can do: photon gun
 - Photons of fixed $\theta (= 6^{\circ})$, any ϕ
 - Steps of energy
- Fit to gaussian core of distribution for fixed E step
- Efficiency = gaussian core yield / # generated
- Lower energy junk: mostly conversions in TOF or elsewhere

Photon Gun vs ω Signal MC

Pseudo-gun Generators

- Embed photon gun (fixed $\theta = 6^{\circ}$, any ϕ , steps of E) within mock physics event
 - o Beam photon 8.5 GeV
 - \circ Protons according to ω genr8 kinematics
 - $\circ \pi^+\pi^-$ according to ω genr8 kinematics

Photon Gun Sample Comparisons

- Same exact thrown photons both cases
- Passing through standard GlueX analysis software (ReactionFilter) reduces efficiency (timing cuts? Need to verify)

Photon Gun Sample Comparisons

Red: photon gun + proton Blue: photon gun + $\pi^+\pi^-$ proton

Filled points: DFCALShower objects Open points: ReactionFilter (neutral hypothesis

GLUE

- Same exact thrown photons both cases
- Efficiency is reduced again by adding π[±] backgrounds, much moreso with standard GlueX analysis software (ReactionFilter) (track vetoing? Need to verify)

(fits are harder/less stable with blue points (π^{\pm} backgrounds in FCAL))

Photon Gun Samples vs. ω MC

Black: photon gun Red: photon gun + proton Blue: photon gun + $\pi^+\pi^-$ proton Magenta: ωMC

Filled points: DFCALShower objects Open points: ReactionFilter (neutral hypothesis)

Lessons From Photon Gun Studies (so far)

- Above a certain energy, everything showers in FCAL
 Opstream conversions reduce number of good quality showers to about 90% at max
- Embedding a proton and beam photon gives the same result as simple photon gun...

o For low-level DFCALShower objects

- But not compared to higher level analysis ReactionFilter
- Embedding additional $\pi^+\pi^-$ further reduces efficiency

Potentially Useful Takeaways

- Making sure MC sample really mocks up data is very important
- FCAL can have large multiplicities and "correct" photon from geometry matching or invariant mass can often be ambiguous

• My solution: exclude all events with \geq 3 FCAL neutral showers

- Total reconstructed efficiency may have similar or greater loss due to software-level cuts under the hood
 - Topology-dependent (inclusive with tracks or no?)
 - Suspected culprits still need to be verified

Example Fits: Photon Gun + proton

Gaussian fit

Example Fits: Photon Gun $+\pi^+\pi^-$ proton

- Gaussian + 3rd order polynomial
- DFCALShowers

 $\gamma_{thrown} = 2.3 \ GeV$