イロン イロン イヨン イヨン

1/20

Cascade Simulations Update

Nathan Sparks

Florida State University, Tallahassee, Florida

GlueX Collaboration Meeting 02/18/2012

Outline

- Procedure
- Status

Analysis

Procedure

Possible Production Mechanism

 $K^{+}(\Xi^{-}K^{+}), K^{+}(\Xi^{0}K^{0}), K^{0}(\Xi^{0}K^{+})$

Production of excited states via a

- forward-going K^0 meson $\rightarrow K^0 (\equiv^- \pi^+) K^+$, etc.
- 2 forward-going K^+ meson

→
$$K^+ (\Xi^- \pi^+) K^0$$
,
 $K^+ (\Xi^0 \pi^-) K^+$, etc

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Procedure

Procedure

Photoproduction of $\Xi^{-}(1320)$ and $\Xi^{0}(1315)$ using 9 GeV photons

- t-channel production using the genr8 program
- Reactions and decay chains
 - $\gamma p \rightarrow K^+ Y^*$ with $Y^* \rightarrow K^+ \Xi^-$, $\Xi^- \rightarrow \Lambda \pi^-$, $\Lambda \rightarrow \pi^- p$ • $\gamma p \rightarrow K^+ Y^*$ with $Y^* \rightarrow K_s \Xi^0$, $\Xi^0 \rightarrow \Lambda \pi^0$, $\Lambda \rightarrow \pi^- p$, $K_s \rightarrow \pi^+ \pi^-$, $\pi^0 \rightarrow \gamma \gamma$ • $\gamma p \rightarrow K_s Y^{*+}$ with $Y^* \rightarrow K^+ \Xi^0$, $\Xi^0 \rightarrow \Lambda \pi^0$, $\Lambda \rightarrow \pi^- p$, $K_s \rightarrow \pi^+ \pi^-$, $\pi^0 \rightarrow \gamma \gamma$
- Excited hyperon parameters: m(Y*) = 1960 MeV and Γ(Y*) = 220 MeV from (Guo *et al.*, PRC **76**, 025208 (2007))
- t-channel slope parameter: 1.4 (GeV)⁻²
- Swim particles through GlueX detectors using HDGeant (minimal control.in file with HADR==0)

Status

Procedure cont. and Status

- Standard reconstruction and PID from OFFLINE software
- Determine best final state particle combination kinematically
- First find $\pi^-\pi^-p$ combination giving best Ξ^- mass
- Pick π⁻p from this list giving best Λ mass
- Form best Y^* from $\Xi^- K^+$
- All final state particles not required in this analysis

Status of analysis

- Efficiencies of reconstructing baryons have improved
- This is due to improvements in the tracking efficiencies, resulting from Simon's work
- Still need to study impact of forward Cherenkov PID on this final state

Analysis

Status

Generated Momentum versus θ Distributions

Status

Mass Distributions

Strategy

- Use MC truth information to better understand quality of tracking and PID
- Match reconstructed tracks to thrown (generated) tracks by comparing hits and also parameter values
- Hits and parameter values are required to point to the same thrown track
- Define a track parameter quality cut value χ^2_r
- $3\chi_r^2 = (\Delta P_T / P_T (\text{thrown}) / \delta f(P_T))^2 + (\Delta \theta / \delta \theta)^2 + (\Delta \phi / \delta \phi)^2$, where $\Delta \theta = \theta$ (reconstructed) $-\theta$ (thrown), etc.
- $\delta f(P_T)=10\%$, $\delta \theta=25$ mrad, $\delta \phi=50$ mrad
- Study the dependence of certain quantities on this cut

Tracking Resolutions (σ)

Track	$\sigma(f(P_T))$ %	$\sigma(\theta)$ mrad	$\sigma(\phi)$ mrad
K^+	3.8	0.5	8.6
proton	3.3	4.9	11.0
$\pi^{-}(\Lambda)$	5.5	14.4	32.2
$\pi^{-}(\Xi)$	4.4	11.2	27.1
$K^+(Y^*)$	2.6	5.0	9.1

- The proton and K⁺'s have better resolutions than the π⁻'s because of the generated kinematics
- π⁻ momentum distribution peaks at about 250 MeV/c, whereas the other particles peak at much higher momenta
- π^- angular resolutions are up to 3 times worse than the others
- See backup slides for fits

Mass Distributions Using Truth Information

Cascade Mass Distribution with Track Parameter Cuts

PID Efficiency with $\chi_r^2 < 10$

Track Reconstruction Efficiencies

Fraction of Low Confidence Level (C.L.) Tracks in C.L. Distribution

م (~ 14/20

Summary and Outlook

Simulations of Cascades at GlueX

- Tracking/Analysis
 - Noticeable improvements in tracking efficiency and C.L. distributions (see Simon's talk)
 - As a result, Cascade reconstruction efficiency has increased
 - Still too many low C.L. tracks for most generated particles in this simulation
 - Tracking C.L. cannot be fully trusted yet

Outlook

- Tracking studies
- Forward Cherenkov PID studies
- Study other cascade reactions (e.g. some with photons)

Summary and Outlook

Track Recon. Efficiency Distributions w/ χ_r^2 < 10

Gaussian Fits for Tracking Resolutions I

Gaussian Fits for Tracking Resolutions II

Momentum versus θ distributions of Low C.L. Tracks I

Momentum versus θ distributions of Low C.L. Tracks II

