
t_kin - t_thrown in slices of t_kin
Projection $Y$ of $\operatorname{bin} x=1[x=0.00000 . .0 .00010]$



Projection $Y$ of $\operatorname{bin} x=5[x=0.00040 . .0 .00050]$


Projection $Y$ of bin $x=3[x=0.00020 . .0 .00030]$


ProjectionY of bin $x=6[x=0.00050 . .0 .00060]$

t_kin - t_thrown in slices of t_kin
ProjectionY of binx $=7$ [ $x=0.00060 . .0 .00070]$



ProjectionY of binx=8 [x=0.00070..0.00080]


ProjectionY of binx=9 [x=0.00080..0.00090]

t_kin - t_thrown in slices of t_kin
ProjectionY of binx=1 [ $x=0.00000 . .0 .00010$ ]
Projection $Y$ of $\operatorname{bin} x=2[x=0.00010 . .0 .00020]$


Projection $Y$ of $\operatorname{bin} x=5[x=0.00040 . .0 .00050]$


ProjectionY of binx=3 [ $\mathrm{x}=0.00020 . .0 .00030$ ]


Projection $Y$ of binx $x=6[x=0.00050 . .0 .00060]$

$2.67445 \mathrm{e}-04$
$2.18878 \mathrm{e}-06$
t_kin - t_thrown in slices of t_kin
ProjectionY of binx=7 [ $\mathrm{x}=0.00060 . .0 .00070$ ]


ProjectionY of binx $=10$ [ $\mathrm{x}=0.00090$..0.00100]


ProjectionY of binx=9 [ $x=0.00080 . .0 .00090$ ]




ProjectionY of binx $=1$ [ $x=0.00000$..0.00010]


Projection $Y$ of bin $x=4[x=0.00030 . .0 .00040]$


Projection $Y$ of binx $=2[x=0.00010 . .0 .00020]$


Projection $Y$ of $\operatorname{bin} x=5[x=0.00040 . .0 .00050]$


Projection $Y$ of $\operatorname{bin} x=3[x=0.00020 . .0 .00030]$


ProjectionY of bin $x=6[x=0.00050 . .0 .00060]$

t_kin - t_thrown in slices of t_thrown

ProjectionY of binx=7 [ $x=0.00060 . .0 .00070$ ]


ProjectionY of binx $=10[x=0.00090 . .0 .00100]$


ProjectionY of binx=8 [ $x=0.00070 . .0 .00080]$


ProjectionY of binx=9 [x=0.00080..0.00090]


