Scaling the Primakoff, coherent and incoherent signals seen in PrimEx to CPP and NPP

Scaling the Primakoff signal seen in PrimEx to NPP

Primakoff production of π^{0}

$$
\begin{aligned}
& \frac{d \sigma_{P r i m E x}}{d \Omega}=\Gamma_{\gamma r} \frac{8 \alpha Z^{2}}{M_{\pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}} F_{E M}^{2}\left(Q^{2}\right) \sin ^{2} \theta \\
& \Gamma_{\gamma \gamma}=7.7 \mathrm{eV}
\end{aligned}
$$

Primakoff production of $\pi^{0} \pi^{0}$

$$
\begin{aligned}
& \frac{d \sigma_{N P P}}{d \Omega d M_{\pi \pi}}=\frac{2 \alpha Z^{2}}{\pi^{2} M_{\pi \pi}} \frac{\beta^{2} E^{4}}{Q^{4}} F_{E M}^{2}\left(Q^{2}\right) \sin ^{2} \theta \sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right) \\
& \frac{d \sigma_{N P P}}{d \Omega d M_{\pi \pi}}=\left[\frac{1}{4 \pi^{2}} \frac{M_{\pi \pi}^{2}}{\beta} \sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right)\right] \frac{8 \alpha Z^{2}}{M_{\pi \pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}} F_{E M}^{2}\left(Q^{2}\right) \sin ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \sigma_{N P P}}{d \Omega} \approx\left[\frac{1}{4 \pi^{2}} \frac{M_{\pi \pi}^{2}}{\beta} \sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right) \Delta M_{\pi \pi}\right] \frac{8 \alpha Z^{2}}{M_{\pi \pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}} F_{E M}^{2}\left(Q^{2}\right) \sin ^{2} \theta \\
& \frac{d \sigma_{N P P}}{d \Omega} \approx \Gamma_{N P P} \frac{8 \alpha Z^{2}}{M_{\pi \pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}} F_{E M}^{2}\left(Q^{2}\right) \sin ^{2} \theta \\
& \Gamma_{N P P} \equiv \frac{1}{4 \pi^{2}} \frac{M_{\pi \pi}^{2}}{\beta} \sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right) \Delta M_{\pi \pi} \\
& M_{\pi \pi} \approx 0.4 \mathrm{GeV} \quad \Delta M_{\pi \pi} \approx 0.4 \mathrm{GeV} \quad \beta=1 \quad \sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right) \approx 10 n b \\
& \Gamma_{N P P}=42 \mathrm{eV} \\
& \frac{d \sigma_{N P P}}{d \Omega d M_{\pi \pi}} \Delta M_{\pi \pi} / \frac{d \sigma_{P r i m E x}}{d \Omega} \approx 5.5
\end{aligned}
$$

Scaling the coherent signal seen in PrimEx to NPP

$\frac{d \sigma_{\gamma A \rightarrow A \pi^{0} \pi^{0}}}{d t} \approx \eta^{2} A^{2} \frac{d \sigma_{\gamma N \rightarrow N \pi^{0} \pi^{0}}}{d t} F^{2}(t)$
$\eta=$ nuclear absorption factor for one π^{0}
$A=$ nuclear mass number
$\frac{d \sigma_{\gamma N \rightarrow N \pi^{0} \pi^{0}}}{d t}=$ photoproduction cross section on the nucleon
$F^{2}(\dagger)=$ nuclear form factor

Data for $\mathrm{f}_{0}(500)$

FIG. 12. S-wave cross section derived by the fit in the $3.2<$ $E_{\gamma}<3.4 \mathrm{GeV}$ and $0.5<-t<0.6 \mathrm{GeV}^{2}$ bin. The systematic and the fit uncertainties are added in quadrature and are shown by the gray band.

Battaglieri et al., PRD80 (2009) 072005

$$
\frac{d \sigma_{\gamma N \rightarrow N \pi \pi}}{d t}=1.0 \frac{\mu b}{G e V^{3}} \times 0.4 \mathrm{GeV} \times \frac{1}{2}=0.2 \frac{\mu b}{G e V^{2}}
$$

I expect the cross section to be smaller at 6.0 GeV

Data for π^{0} photo-production on the nucleon

$$
\frac{d \sigma_{\gamma N \rightarrow N \pi^{0}}}{d t}=1.5 \frac{\mu b}{G e V^{2}} @ 6 \mathrm{GeV}
$$

Fig. 5. $d \sigma / d t$ in $\mu \mathrm{b} /(\mathrm{GeV} / c)^{2}$ is plotted versus $|t|$ for incident photon energies of $6,9,12$, and 15 GeV . The dashed lines are only to guide the eye.
$\eta=$ nuclear absorption factor for second $\pi^{0}=0.45$ (Is this correct?)
$\frac{d \sigma_{\gamma N \rightarrow N \pi^{0} \pi^{0}}}{d t} / \frac{d \sigma_{\gamma N \rightarrow N \pi^{0}}}{d t}=\frac{0.2}{1.5}=0.13$
Assume $F_{N P P}^{2}(t) / F_{\text {PrimEx }}^{2}(t) \approx 1$

$$
\frac{d \sigma_{\gamma A \rightarrow A \pi^{0} \pi^{0}}}{d t} / \frac{d \sigma_{\gamma A \rightarrow A \pi^{0}}}{d t} \approx 0.06
$$

Scaling the incoherent signal seen in PrimEx to NPP

$\frac{d \sigma_{\gamma A \rightarrow \pi^{0} \pi^{0}}}{d t} \approx \eta^{2} A(1-G(t)) \frac{d \sigma_{\gamma N \rightarrow N \pi^{0} \pi^{0}}}{d t}$
$\eta=$ nuclear absorption factor for one $\pi^{0}=.45$?
$A=$ nuclear mass number
$\frac{d \sigma_{\gamma N \rightarrow N \pi^{0} \pi^{0}}}{d t}=$ photoproduction cross section on the nucleon
$1-G(t)=$ Pauli suppression factor, assumed equal for PrimEx and NPP
$\frac{d \sigma_{\gamma A \rightarrow \pi^{0} \pi^{0}}}{d t} / \frac{d \sigma_{\gamma A \rightarrow \pi^{0}}}{d t} \approx 0.06$

Increases by a factor of $\times 5.5$

