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Scaling the Primakoff signal seen in PrimEx to NPP

dσPrimEx

dΩ
= Γγγ

8αZ2

M3
π

β3E4

Q4
F2

EM(Q2)sin2θPrimakoff production of π0 

Primakoff production of π0π0  

dσNPP

dΩdMππ
=

2αZ2

π2Mππ

β2E4

Q4
F2

EM(Q2)sin2θ σ(γγ → π0π0)

dσNPP

dΩdMππ
= [ 1

4π2

M2
ππ

β
σ(γγ → π0π0)] 8αZ2

M3
ππ

β3E4

Q4
F2

EM(Q2)sin2θ

Γγγ = 7.7 eV



dσNPP

dΩ
≈ [ 1

4π2

M2
ππ

β
σ(γγ → π0π0)ΔMππ] 8αZ2

M3
ππ

β3E4

Q4
F2

EM(Q2)sin2θ

ΓNPP ≡
1

4π2

M2
ππ

β
σ(γγ → π0π0)ΔMππ

Mππ ≈ 0.4 GeV ΔMππ ≈ 0.4 GeV β = 1 σ(γγ → π0π0) ≈ 10nb

ΓNPP = 42 eV

dσNPP

dΩdMππ
ΔMππ /

dσPrimEx

dΩ
≈ 5.5

dσNPP

dΩ
≈ ΓNPP

8αZ2

M3
ππ

β3E4

Q4
F2

EM(Q2)sin2θ



dσγA→Aπ0π0

dt
≈ η2A2

dσγN→Nπ0π0

dt
F2(t)

η = nuclear absorption factor for one π0  

A = nuclear mass number 

 = photoproduction cross section on the nucleon 

F2(t) = nuclear form factor 

dσγN→Nπ0π0

dt

Scaling the coherent signal seen in PrimEx to NPP
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As expected, the dominant contribution from the !
meson is clearly visible in the P-wave, whose contribution
is about 1 order of magnitude larger than the other waves.
In particular, the main contribution comes from Ilm¼1;þ1,
corresponding to a nonhelicity-flip (s-channel helicity con-

serving) transition. In the S-wave, a strong interference
pattern shows up around M"" ¼ 980 MeV, which reveals
contributions from f0ð980Þ production. The contribution
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FIG. 11 (color online). Fit result (black line) of the final
experimental moments (red dots) for 3:2<E# < 3:4 GeV and
0:5<%t < 0:6 GeV2. The systematic uncertainty and fit uncer-
tainty are added in quadrature and are shown by the gray band.
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FIG. 12. S-wave cross section derived by the fit in the 3:2<
E# < 3:4 GeV and 0:5<%t < 0:6 GeV2 bin. The systematic
and the fit uncertainties are added in quadrature and are shown
by the gray band.
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FIG. 13. P-wave cross section derived by the fit in the 3:2<
E# < 3:4 GeV and 0:5<%t < 0:6 GeV2 bin. Bottom plots: the
same amplitudes for the three possible values of $"" (from left
to right %1, 0, and þ1). The systematic and fit uncertainties are
added in quadrature and are shown by the gray band.
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FIG. 14. As Fig. 13 for D-wave.
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072005-12dσγN→Nππ

dt
= 1.0

μb
GeV3

× 0.4 GeV ×
1
2

= 0.2
μb

GeV2

Data for f0(500) 

I expect the cross section to be smaller at 6.0 GeV
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pie, the solid curve shows the model of Frf(yland. '
As mentioned above, the fits do/dt-(s -M~e)'o '

provide a good representation of the data. To pro-
duce angular distributions at standard energies,
and as an average over the numerous individual
points, values of d&r/df were taken from these
straight-line fits at fixed values of Ee = 6, 9, lg,
and 15 GeV. The results are listed in Table I and
plotted in Fig. 5. The distributions show a "dip"
around t =—0.5 (GeV/c)', not changing much with
energy. The slight change from our earlier publi-
cations is due to the improved subtraction of the
Compton contribution. The extracted m' cross sec-
tion in the dip depends very critically on this cor-
rection. For example, at 15 GeV and t = -0.5
(GeV/c)', two-thirds of the observed yield is due
to Compton scattering. Whereas we earlier had to
rely upon a theoretical estimate for this correc-
tion, experimental values can now be used direct-
ly. It is important to note that the experimental
setup was nearly the same for the two experi-
ments, hence there are practically no systematic
errors attached to this correction. However,

O.ol

0 0.4 0.8
—t t(GeV/c) ]

l.2 l.6

Fig. 5. dc/dt in pb/(Gev/c)~ is plotted versus }t( for
incident photon energies of 6, 9, 12, and 15 GeV. The
dashed lines are only to guide the eye.

since the dip region at the highest energies is dif-
ficult to fit and requires such a large Compton
subtraction, we have made coincidence measure-
ments using the technique described in the next
section (but with unpolarized photons). Figure 6
shows coincidence yields across the hodoscope at
1V-GeV average photon energy and momentum
transfers both in the dip and on the secondary
maximum, where single-arm measurement is
fairly easy. It is clear that the / cross section
does not vanish at t = -0.5 (GeV/c)a, and in fact
the coincidence result is in very good agreement
with the single-arm results in Fig. 5.

TABLE I. da'/dt(p+ p x +p), pb/(GeV/c)'.

)t[, (GeV/c) Ep=6 GeV Ep=9 GeV Ep = 12 GeV Ep=15 GeV

0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1
1.38

1.13
0.86
0.67
0.34
0.130
0.078
0.095
0.122

+ 0.11
+ 0.06
+ 0.05
+ 0.04
+O.O14
+ 0.010
+ 0.012
+ 0.010

0.140 + 0.007
0.129 + 0.005
0.0849+ 0.0045

0.59 +0.07
0.47 +0.05
0.33 +0.04
0.138 +0.020
0.058 +0.008
0.039 +0.006
0.045 +0.008
0.054 +0.005
0.066 +0.013
0.063 +0.004
0.051 +0.003
0.0321+0.0024

0.37 + 0.05
0.30 + 0.04
0.20 + 0.03
0.073 + 0.013
0.033 +0.006
0.024 + 0.004
0.027 + 0.006
0.030 +0.003
0.038 +0.003
0.036 +0.003
0.027 + 0.002
0.0161+ 0.0013

0.22 +0.03
0.137 +0.020
0.045 +0.009
0.021 + 0.005
0.016 + 0.003
0.018 + 0.004
0.019 +0.003
0.024 + 0.003
0.0231+0.0025
0.0160+0.0013
0.0094 +0.0009

dσγN→Nπ0

dt
= 1.5

μb
GeV2

@ 6 GeV

Data for π0 photo-production on the nucleon



η = nuclear absorption factor for second π0 = 0.45  (Ιs this correct ?)  

  

Assume  

dσγN→Nπ0π0

dt
/
dσγN→Nπ0

dt
=

0.2
1.5

= 0.13

F2
NPP(t)/F2

PrimEx(t) ≈ 1

dσγA→Aπ0π0

dt
/
dσγA→Aπ0

dt
≈ 0.06



dσγA→π0π0

dt
≈ η2A (1 − G(t))

dσγN→Nπ0π0

dt

η = nuclear absorption factor for one π0 = .45 ?   

A = nuclear mass number 

 = photoproduction cross section on the nucleon 

1-G(t) = Pauli suppression factor, assumed equal for PrimEx and NPP

dσγN→Nπ0π0

dt

Scaling the incoherent signal seen in PrimEx to NPP

dσγA→π0π0

dt
/
dσγA→π0

dt
≈ 0.06
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Increases by a factor of x 5.5

Decreases by a factor of x 0.06


