## Physics Analysis and Simulation Scenarios

Goal: 12,000 Cores in the Farm by March 2015
Assumptions:
1 Moore's Law mostly holds, but assume it runs a bit slower each year (conservative)
2 Compute nodes have lifetime of 5 years, so $75 \%$ of the 2011 farm ages out

## Scenario 1: Exponential growth in computing power (buy late)

| Year | \$/core | \#cores added | retired | cost \$K | capacity <br> \#cores |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2011 |  | 256 |  |  | 1020 |
| 2012 | $\$ 184$ | 512 | 32 | $\$ 94$ | 1500 |
| 2013 | $\$ 120$ | 1700 | 200 | $\$ 204$ | 3000 |
| 2014 | $\$ 80$ | 3240 | 240 | $\$ 259$ | 6000 |
| 2015 | $\$ 60$ | 6280 | 280 | $\$ 377$ | 12000 |

Scenario 2: Low expenditures in FY12, constant dollars FY13-15

| Year | \$/core | \#cores added | retired | cost \$K | capacity <br> \#cores |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2011 |  | 256 |  |  | 1020 |
| 2012 | $\$ 184$ | 512 | 32 | $\$ 94$ | 1500 |
| 2013 | $\$ 120$ | 2492 | 200 | $\$ 299$ | 3792 |
| 2014 | $\$ 80$ | 3740 | 240 | $\$ 299$ | 7292 |
| 2015 | $\$ 60$ | 4988 | 280 | $\$ 299$ | 12000 |

Scenario 2: \$200K in FY12, Constant Dollars FY13-15

| Year | \$/core | \#cores added | retired | cost \$K | capacity <br> \#cores |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2011 |  | 256 |  |  | 1020 |
| 2012 | $\$ 184$ | 1024 | 32 | $\$ 200$ | 2012 |
| 2013 | $\$ 120$ | 2376 | 200 | $\$ 285$ | 4188 |
| 2014 | $\$ 80$ | 3572 | 240 | $\$ 286$ | 7520 |
| 2015 | $\$ 60$ | 4760 | 280 | $\$ 286$ | 12000 |

Notes:
1 the above costs are only the computing costs, not storage (disk, tape).
2 all of these procurements are ops, not capital ( $<\$ 500 \mathrm{~K}$ )
3 these numbers can be easily scaled up/down
4 in FY14 this farm would exceed $1 / 2$ the size of LQCD
5 in FY15 LQCD would probably deploy a system $>4 x$ larger than the whole farm

