## Introduction

- Electro  $(\alpha_\pi)$  and Magnetic  $(\beta_\pi)$  Polarizabilities represent fundamental properties of the charged pion in the lowenergy sector of QCD
- $\alpha_{\pi}$  and  $\beta_{\pi}$  are related to the charged pion weak form factors  $F_{\nu}$  and  $F_{\Delta}$ :

$$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha_{EM}}{m_{\pi}F_{\pi}^2} (L_9^r + L_{10}^r) \propto \frac{F_A}{F_V}$$

where the low-energy constants  $L_{10}^{r}$  and  $L_{9}^{r}$  are part of the Gasser-Leutwyler effective Lagrangian

 Measuring the polarizabilities of the charged pion can be used to test the even-parity part of the Chiral Lagrangian
(as opposed to the odd-parity sector which is tested via anomalous processes such as π°->γγ) • LO O(p4) ChPT calculations give:

$$\alpha_{\pi}$$
 = - $\beta_{\pi}$  = 2.78 ± 0.1 x 10<sup>-4</sup> fm<sup>3</sup>

NLO O(p<sup>6</sup>) corrections are relatively small

$$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1 \times 10^{-4} \text{ fm}^3$$

with

$$\alpha_{\pi}$$
 -  $\beta_{\pi}$  = 5.7 ± 1.0 x 10<sup>-4</sup> fm<sup>3</sup>

Dispersion Relations have been used to as well, but do not agree:

$$\alpha_{\pi}$$
 -  $\beta_{\pi}$  = 13.0 + 2.6 - 1.9 x 10<sup>-4</sup> fm<sup>3</sup> Fil'kov et al. 2006  $\alpha_{\pi}$  -  $\beta_{\pi}$  = 5.7 x 10<sup>-4</sup> fm<sup>3</sup> Pasquini et al. 2008

# **Experimental Access**

The best way to access polarizabilities of the charged pion is through Compton scattering off the  $\pi$ .

No pion target exists requiring us to access it through other means.

We fall back to using nearly real targets from the particle field of a nucleus.

Radiative pion photo-production



Primakoff effect



Light by light scattering (by crossing symmetry)





## The Glue Detector in Hall-D

### New Experiment will use GlueX detector in Hall-D:

- Linearly polarized photon source (~9GeV)
- 2T solenoidal magnetic field ( $\delta p/p = \text{few }\%$ )
- Drift chambers
- High resolution Time-of-flight detector

# barrel time-of calorimeter -flight target diamond wafer central drift chambers central drift chamber superconducting magnet is not to scale

#### Modifications to standard GlueX setup:

- Replace LH2 target with thin Pb target
- Move target upstream to improve low-angle acceptance
- Alternate start-counter?



# Linear Polarization of incident photon beam helps distinguish Primakoff from coherent $\rho^o$ production



# Relating cross-section to $\alpha_{\pi}$ - $\beta_{\pi}$





Figure 1:  $\gamma\gamma \to \pi^+\pi^-$  cross sections. Red curve: Born approx. (no polarizability effect); black solid: unsubtracted DR calculation with  $\alpha_{\pi} - \beta_{\pi} = 5.7$ ; dashed: subtracted DR with  $\alpha_{\pi} - \beta_{\pi} = 5.7$ ; dotted: subtracted DR with  $\alpha_{\pi} - \beta_{\pi} = 13.0$ .

Cross-section for  $\gamma\gamma \to \pi^+\pi^-$  calculated based on two values of  $\alpha_\pi^-\beta_\pi$ :

$$\alpha_{\pi}$$
 = 13.0 x 10<sup>-4</sup> fm<sup>3</sup> (top, dotted line)

$$\alpha_{\pi}$$
 = 5.7 x 10<sup>-4</sup> fm<sup>3</sup> (solid and dashed lines)

Cross-section varies by ~10% for factor of 2 variation in  $\alpha_{\pi}$ – $\beta_{\pi}$ 

Need measurement of  $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$  at few percent level

# Detector Rates/Acceptance

- 10<sup>7</sup> tagged photons/second on target
- 500 hours of running
- Estimated ~36k Primakoff events (contrast this with the ~400 events of the MARK-II measurement, the most accurate to date using the  $\gamma\gamma$ -> $\pi\pi$  reaction)

# Anomalous magnet moment of the $\mu$ : $(g_{\mu}-2)/2$

- Experimental uncertainty of ~ 63 x 10<sup>-11</sup>
- SM calculation has uncertainty of ~ 49 x 10<sup>-11</sup>
  - Hadronic light-by-light (HLBL) scattering is one of two major contributors to SM uncertainty (other is hadronic vacuum polarization)
  - $\pi$  polarizability is potentially significant contribution to HLBL that is currently omitted from current SM calculation
- g-2 collaboration at Fermilab is preparing a measurement that will reduce experimental uncertainty by a factor of 4
- A measurement of the  $\pi$  polarizability could help reduce the SM uncertainty significantly

For detailed info on planned Fermi-lab experiment, see http://gm2.fnal.gov/public\_docs/proposals/Proposal-APR5-Final.pdf

# Summary

- A new experiment to measure the charge pion polarizability  $\alpha_{\pi}$ - $\beta_{\pi}$  via the  $\gamma\gamma^*$ -> $\pi^+\pi^-$  reaction is being developed using the GlueX detector at Jefferson Lab
- Previous measurements of  $\alpha_{\pi}$ - $\beta_{\pi}$  disagree by a factor > 2
- Theoretical predictions of  $\alpha_{\pi}$ - $\beta_{\pi}$  disagree by a factor  $\approx 2$  (5.7 x 10<sup>-4</sup> fm<sup>3</sup> vs. 13.0 x 10<sup>-4</sup> fm<sup>3</sup>)
- An improved measurement of  $\alpha_\pi$ - $\beta_\pi$  would improve the SM prediction of the anomalous magnetic moment of the  $\mu$ : (g<sub> $\mu$ </sub>-2)/2