Introduction - Electro (α_π) and Magnetic (β_π) Polarizabilities represent fundamental properties of the charged pion in the lowenergy sector of QCD - α_{π} and β_{π} are related to the charged pion weak form factors F_{ν} and F_{Δ} : $$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha_{EM}}{m_{\pi}F_{\pi}^2} (L_9^r + L_{10}^r) \propto \frac{F_A}{F_V}$$ where the low-energy constants L_{10}^{r} and L_{9}^{r} are part of the Gasser-Leutwyler effective Lagrangian Measuring the polarizabilities of the charged pion can be used to test the even-parity part of the Chiral Lagrangian (as opposed to the odd-parity sector which is tested via anomalous processes such as π°->γγ) • LO O(p4) ChPT calculations give: $$\alpha_{\pi}$$ = - β_{π} = 2.78 ± 0.1 x 10⁻⁴ fm³ NLO O(p⁶) corrections are relatively small $$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1 \times 10^{-4} \text{ fm}^3$$ with $$\alpha_{\pi}$$ - β_{π} = 5.7 ± 1.0 x 10⁻⁴ fm³ Dispersion Relations have been used to as well, but do not agree: $$\alpha_{\pi}$$ - β_{π} = 13.0 + 2.6 - 1.9 x 10⁻⁴ fm³ Fil'kov et al. 2006 α_{π} - β_{π} = 5.7 x 10⁻⁴ fm³ Pasquini et al. 2008 # **Experimental Access** The best way to access polarizabilities of the charged pion is through Compton scattering off the π . No pion target exists requiring us to access it through other means. We fall back to using nearly real targets from the particle field of a nucleus. Radiative pion photo-production Primakoff effect Light by light scattering (by crossing symmetry) ## The Glue Detector in Hall-D ### New Experiment will use GlueX detector in Hall-D: - Linearly polarized photon source (~9GeV) - 2T solenoidal magnetic field ($\delta p/p = \text{few }\%$) - Drift chambers - High resolution Time-of-flight detector # barrel time-of calorimeter -flight target diamond wafer central drift chambers central drift chamber superconducting magnet is not to scale #### Modifications to standard GlueX setup: - Replace LH2 target with thin Pb target - Move target upstream to improve low-angle acceptance - Alternate start-counter? # Linear Polarization of incident photon beam helps distinguish Primakoff from coherent ρ^o production # Relating cross-section to α_{π} - β_{π} Figure 1: $\gamma\gamma \to \pi^+\pi^-$ cross sections. Red curve: Born approx. (no polarizability effect); black solid: unsubtracted DR calculation with $\alpha_{\pi} - \beta_{\pi} = 5.7$; dashed: subtracted DR with $\alpha_{\pi} - \beta_{\pi} = 5.7$; dotted: subtracted DR with $\alpha_{\pi} - \beta_{\pi} = 13.0$. Cross-section for $\gamma\gamma \to \pi^+\pi^-$ calculated based on two values of $\alpha_\pi^-\beta_\pi$: $$\alpha_{\pi}$$ = 13.0 x 10⁻⁴ fm³ (top, dotted line) $$\alpha_{\pi}$$ = 5.7 x 10⁻⁴ fm³ (solid and dashed lines) Cross-section varies by ~10% for factor of 2 variation in α_{π} – β_{π} Need measurement of $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ at few percent level # Detector Rates/Acceptance - 10⁷ tagged photons/second on target - 500 hours of running - Estimated ~36k Primakoff events (contrast this with the ~400 events of the MARK-II measurement, the most accurate to date using the $\gamma\gamma$ -> $\pi\pi$ reaction) # Anomalous magnet moment of the μ : $(g_{\mu}-2)/2$ - Experimental uncertainty of ~ 63 x 10⁻¹¹ - SM calculation has uncertainty of ~ 49 x 10⁻¹¹ - Hadronic light-by-light (HLBL) scattering is one of two major contributors to SM uncertainty (other is hadronic vacuum polarization) - π polarizability is potentially significant contribution to HLBL that is currently omitted from current SM calculation - g-2 collaboration at Fermilab is preparing a measurement that will reduce experimental uncertainty by a factor of 4 - A measurement of the π polarizability could help reduce the SM uncertainty significantly For detailed info on planned Fermi-lab experiment, see http://gm2.fnal.gov/public_docs/proposals/Proposal-APR5-Final.pdf # Summary - A new experiment to measure the charge pion polarizability α_{π} - β_{π} via the $\gamma\gamma^*$ -> $\pi^+\pi^-$ reaction is being developed using the GlueX detector at Jefferson Lab - Previous measurements of α_{π} - β_{π} disagree by a factor > 2 - Theoretical predictions of α_{π} - β_{π} disagree by a factor ≈ 2 (5.7 x 10⁻⁴ fm³ vs. 13.0 x 10⁻⁴ fm³) - An improved measurement of α_π - β_π would improve the SM prediction of the anomalous magnetic moment of the μ : (g_{μ}-2)/2