• It was noticed very early in the running of the CDC at Jlab that the timing spectrum for the CDC was not as expected.

• It was noticed very early in the running of the CDC at Jlab that the timing spectrum for the CDC was not as expected.

• Look at the timing distribution as a function of the " ϕ_{DOCA} "

- Look at the timing distribution as a function of the " ϕ_{DOCA} "
- x-axis is ϕ_{DOCA} in radians, y-axis is measured drift time. Straw is not included in the fit.

- Investigating if there is a pattern to where the "bad" straws are hints that there is.
- Include more data to fill in these distributions.
- Need **a lot** of data to determine corrections straw by straw in several bins of ϕ_{DOCA} and z.

- Look at the timing distribution as a function of the "φ_{DOCA}"
- x-axis is ϕ_{DOCA} in radians, y-axis is measured drift time. Straw is not included in the fit.

Near the Side

Straw 107 Drift time Vs phi_DOCA

- Investigating if there is a pattern to where the "bad" straws are hints that there is.
- Include more data to fill in these distributions.
- Need **a lot** of data to determine corrections straw by straw in several bins of ϕ_{DOCA} and z.

- Look at the timing distribution as a function of the " ϕ_{DOCA} "
- x-axis is ϕ_{DOCA} in radians, y-axis is measured drift time in ns. Straw is not included in the fit.

Straw 025 Drift time Vs phi_DOCA

 Take a particularly bad straw and plot the predicted drift distance from the track vs. the time recorded on the straw.

- Look at the timing distribution as a function of the " ϕ_{DOCA} "
- x-axis is measured drift time in ns, y-axis is predicted drift distance in cm.
- Straw is not included in the fit.

Now FitSlicesX()...

Slightly zoomed in...

Predicted Drift Distance [cm]