HallD Detectors

Currently two detectors that need high purity gas supplies:

Central Drift Chambers (CDC)		Forward Drift Chambers (FDC)		
Volume	1.672 * 10 ⁶ cm ³		Volume	1.062 * 10 ⁵ cm ³
Chambers	1		Chambers	4
Gas	Ar/CO ₂		Gas	Ar/CO ₂
Mix	50%/50%		Mix	50%/50%
2Vol/day	2.3 l/min		2Vol/day	0.6 l/min

Ar Cylinder 8.83 m^3 1.5 l/min 4 days CO₂ Cylinder 9.56 m^3 1.5 l/min 4.4 days

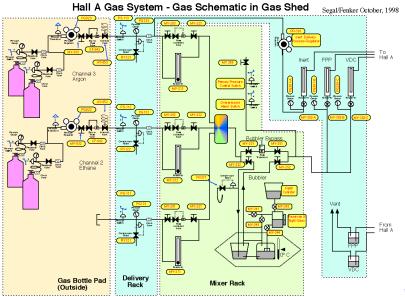
This is very optimistic more like 2days for one bottle.

The other Halls?

Hall-A

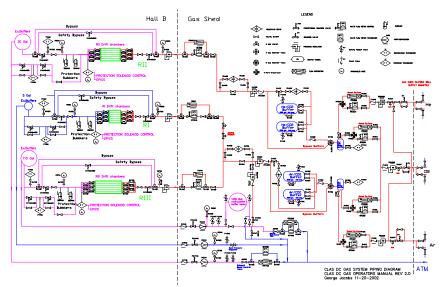
- \sim 1 l/min
- Cylinders
- No pumps

Hall-B


- \sim 30 l/min
- Dewars
- Pumps

Hall-C

- $\bullet\ \sim 0.4 \text{ l/min}$
- Cylinders
- No pumps


We need about 10 times more gas than Hall-C but 10 times less than Hall-B!

HallA Gas System

3/5

HallB Gas System

Detector Gas System GlueX [4] 4/5

What do we need/want

- Independend gas mixing systems for FDC and CDC
- Individual gas supply for 4 FDC chambers and 1 CDC chamber
- Gas buffer volumes are highly recommended (Steve, Jack)
- Avoid usage of pumps.
- Avoid usage of dewar supply.
- ...your input!

Option 1

- 5 mixing stations
- 10 mass flow controllers
- 5 supply lines
- 5 return lines
- 4 oxigen sensor stations
- Valves, PDs

Option 2

- 2 mixing stations
- 9 mass flow controllers
- 2 supply lines
- 5 return lines
- 4 oxigen sensor stations
- Valves, PDs