Efficiency of the tagger fixed array

Effects of

- Gaps between counters
- Collimation of electrons by magnet aperture

D. Sober
Catholic University
1 February 2016

Tagger ratios

For each photon energy bin:

N(A) = events with photon through collimator

N(B) = events with detected electron in tagger

 $N(A \cdot B)$ = events with collimated tagged photon

Ratio 1 = $N(A \cdot B)/N(B)$ ($\approx 50\%$ for 5 mm collimator)

Common name: "tagger efficiency", "tagging ratio"

Proposed name: photon ratio, ε_{γ}

Use: Normalization using tagger counts

Ratio 2 = $N(A \cdot B)/N(A)$ ($\approx 90\%$)

Common name: (none)

Proposed name: electron ratio, $\varepsilon_{\rm e}$

Use: Normalization using pair spectrometer

Tagger ratios → Tagged photon flux

Method 1: Use ϵ_{γ} = N(collimated photons · tag)/N(tag) Measure N_{tag} Incident tagged photons = ϵ_{γ} N_{tag}

Method 2: Use ε_e = N(collimated photons · tag)/N(collimated photons) Measure N_{PS} Incident tagged photons = ε_e N_{PS} / f_{PS} where f_{PS} = (pair converter fraction)·(P.S. efficiency)

Effects contributing to electron ratio ε_{γ} :

- Gaps between fixed-array counters (next slides)
 Gaps mainly result from shifting second counter plane
 from 13 cm to 18 cm
- Collimation of electrons by the magnet poles
 Depends on angular distributions and size of photon collimator
- Efficiency of tagger counters
 - e.g. N. Sparks's high voltage tests at last beam meeting

Counters 1-10 (11.6-11.8 GeV):

Green lines show the bounding 0-angle electron trajectories for each front-plane counter (Y=-8 cm). Back-plane (Y=-18 cm) counters do not fill the region between trajectories.

The reason:

Counters were originally designed to be placed at Y = -8 cm and -13 cm.

Bill Crahen moved the back-plane to -18 cm without adjusting counter widths or front-plane positions. Blue boxes show the intended counter positions.

For Counters 41-50 (E $\gamma \approx$ 11 GeV), effect is similar:

Counter energy boundaries were calculated using zero-angle electrons. How important is the bremsstrahlung electron angular distribution? Plot rays for $\theta_e = 0$ and $\pm 2\theta_{ce}$.

Counter 1-8 11.79-11.70 GeV

Counter 52-56 10.77 – 10.68 GeV

Plot of energy gaps between counters for **0-angle electrons** only.

Gap sizes alternate between front-plane and back-plane counters because of the method used to displace the counters. Gaps give typical inefficiency $\approx 5\%$.

Note that for Counters 80-131 there are 3 planes of counters (-8, -13, -18 cm).

"Negative gap" = overlap (2 counters in coincidence)

Energy gaps for $\theta = \pm 2\theta_{ce}$ which contains most of the angular distribution. $\theta_{ce} = (m_e/E_0) E_\gamma/(E_0-E_\gamma)$

Gaps and overlaps are larger, but not dramatically so.

Another effect: vertical acceptance of tagger magnet gap (no quad)

Trace rays through tagger magnet, and find vertical angle for which z = 15 mm at the exit chamfer.

Left figure: $\Theta_{z \text{ max}}$ decreases rapidly with E_e/E_0 (independent of E_0), but ...

Right figure: $\Theta_{z \text{ max}} / \Theta_{ce}$ increases rapidly with E_{e}

At 12 GeV, only for the first few counters is $\Theta_{z \text{ max}} < 3 \Theta_{ce}$

Estimate of fraction of electrons blocked by magnet gap (no quad) Depends on 3 parameters: $E_e/E_{0,}$ $\Theta_{z \max}/\Theta_{ce}$ and $\Theta_{\gamma \max}/\Theta_{c}$

Interpolate/extrapolate from old (1998) bremsstrahlung integrations performed for Hall B: (Caution: not very confident about the accuracy of these numbers – use for trends only.)

