Where things currently stand

- Haiyan calculates that we should expect to see 48 $d(\gamma, p\pi^-)$ counts for 5 days of running.
 - This is based on scaling statistical uncertainties.
 - I still need some more info to reproduce this.
- My back-of-the-envelope calculation gives 2000 events. (40x higher)
- Phoebe's MC calculation (based on proposal assumptions) gives 12,700 events.
 - Matches Maria's calculation

My back-of-the envelope calculation

The rate is given by:

$$R = \frac{d\sigma}{\mathrm{d}\Omega_{cm}} \times \Omega_{cm} \times \mathcal{L}$$

I'll show you my math for each.

Cross Section

 $\gamma n \rightarrow \pi^- p$ at 90°

Jackson re-fit all of the high-energy data for $\gamma n \rightarrow \pi^- p$, $\gamma p \rightarrow \pi^+ n$, arrives at very similar numbers to what was in our proposal. For the $\gamma n \rightarrow \pi^- p$ fit he gets:

Bin size

"...with an angular bin that is 18 degree in Theta_cm (72 to 108 degree in CMS), and 2pi for phi angle."

Assuming 72°-108° in θ_{cm} (a 36° bin) and 2π in ϕ , comes to $\Omega = [\cos(72^\circ) - \cos(108^\circ)]2\pi$ $\Omega = [0.309 - (-0.309)]2\pi$ $\Omega = 3.88$ sr

The cross section in this bin is roughly 0.16 nb.

Luminosity

• The beam flux is 2×10^7 /s

• The target is 30 cm of liquid deuterium with one neutron per atom. $30 \ cm \times 0.167 \frac{g}{cm^3} \times \frac{1 \ mole}{2 \ g} \times 6.02 \times 10^{23} \frac{a \ toms}{mole} = 1.5 \times 10^{24} \ cm^{-2}$

The total luminosity is

$$\mathcal{L} = 3 \times 10^{31} \ cm^{-2} \ s^{-1}$$
$$\mathcal{L} = 3 \times 10^{-2} \ nb^{-1} \ s^{-1}$$
$$\mathcal{L} = 2600 \ nb^{-1} \ /day$$

Rate

The expected rate per day, with these assumptions is:

$$R = \frac{d\sigma}{d\Omega_{cm}} \times \Omega_{cm} \times \mathcal{L}$$

$$R = \left[0.04 \frac{nb}{sr}\right] \times [3.9 \ sr] \times [2600 \frac{nb^{-1}}{day}]$$

$$R = 400 \text{ events /day}$$

R = 2000 events in 5 days

Phoebe's Current Numbers

Since last week, Phoebe added:

- Coherent peak beam energy cut (8–9 GeV)
- Nuclear transparency, as assumed by the proposal.

Reaction	Phoebe's Simulation	2019 Proposal
$d(\gamma, p\pi^-)$ Mean Field	11,700	13,600
$d(\gamma, p\pi^-)$ Short-range	1,100	750
He(γ , $p\pi^-$) Short-range	4,300	840 * clearly a bug
C(γ , $p\pi^-$) Short-range	3,800	2,800

Phoebe's distributions.

SRC distributions in He and C

