Where things currently stand

- Haiyan calculates that we should expect to see $48 d\left(\gamma, p \pi^{-}\right)$counts for 5 days of running.
- This is based on scaling statistical uncertainties.
- I still need some more info to reproduce this.
- My back-of-the-envelope calculation gives 2000 events. (40x higher)
- Phoebe's MC calculation (based on proposal assumptions) gives 12,700 events.
- Matches Maria's calculation

My back-of-the envelope calculation

The rate is given by:

$$
R=\frac{d \sigma}{\mathrm{~d} \Omega_{c m}} \times \Omega_{c m} \times \mathcal{L}
$$

I'll show you my math for each.

Cross Section

Jackson re-fit all of the high-energy data for $\gamma n \rightarrow \pi^{-} p, \gamma p \rightarrow$ $\pi^{+} n$, arrives at very similar numbers to what was in our proposal. For the $\gamma n \rightarrow \pi^{-} p$ fit he gets:
$\frac{d \sigma}{d \Omega_{c m}}=1.18 \times 10^{7} n b \operatorname{GeV}^{14} s^{-7}\left(1+\cos \theta_{c m}\right)^{b}\left(1-\cos \theta_{c m}\right)^{c}$

- $b=-5.329$
- $\mathrm{c}=-4.638$

At 90°, this reduces to:

$$
\frac{d \sigma}{d \Omega}_{c m}\left(90^{\circ}\right)=1.18 n b \mathrm{GeV}^{14} s^{-7}
$$

This is plotted to the left.
At $E_{\gamma}=8 \mathrm{GeV}$, this is roughly $0.04 \mathrm{nb} / \mathrm{sr}$

Bin size

"... with an angular bin that is 18 degree in Theta_cm (72 to 108 degree in CMS), and 2pi for phi angle."

Assuming $72^{\circ}-108^{\circ}$ in $\theta_{c m}$ (a 36° bin) and 2π in ϕ, comes to

$$
\begin{aligned}
& \Omega=\left[\cos \left(72^{\circ}\right)-\cos \left(108^{\circ}\right)\right] 2 \pi \\
& \Omega=[0.309-(-0.309)] 2 \pi \\
& \Omega=3.88 \mathrm{sr}
\end{aligned}
$$

The cross section in this bin is roughly 0.16 nb .

Luminosity

- The beam flux is $2 \times 10^{7} / \mathrm{s}$
- The target is 30 cm of liquid deuterium with one neutron per atom.
$30 \mathrm{~cm} \times 0.167 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mole}}{2 \mathrm{~g}} \times 6.02 \times 10^{23} \frac{\text { atoms }}{\mathrm{mole}}=1.5 \times 10^{24} \mathrm{~cm}^{-2}$

The total luminosity is

$$
\begin{aligned}
\mathcal{L} & =3 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\mathcal{L} & =3 \times 10^{-2} \mathrm{nb}^{-1} \mathrm{~s}^{-1} \\
\mathcal{L} & =2600 \mathrm{nb}^{-1} / \text { day }
\end{aligned}
$$

Rate

The expected rate per day, with these assumptions is:

$$
\begin{aligned}
& R={\frac{d \sigma}{d \Omega_{c m}} \times \Omega_{c m} \times \mathcal{L}}_{R}=\left[0.04 \frac{n b}{s r}\right] \times[3.9 \mathrm{sr}] \times\left[2600 \frac{n b^{-1}}{\text { day }}\right] \\
& R=400 \text { events } / \text { day }
\end{aligned}
$$

$R=2000$ events in 5 days

Phoebe's Current Numbers

Since last week, Phoebe added:

- Coherent peak beam energy cut (8-9 GeV)
- Nuclear transparency, as assumed by the proposal.

Reaction	Phoebe's Simulation	2019 Proposal
$d\left(\gamma, p \pi^{-}\right)$Mean Field	11,700	13,600
$d\left(\gamma, p \pi^{-}\right)$Short-range	1,100	750
He $\left(\gamma, p \pi^{-}\right)$Short-range	4,300	840 * clearly a bug
$\mathrm{C}\left(\gamma, p \pi^{-}\right)$Short-range	3,800	2,800

Phoebe's distributions.

SRC distributions in He and C

