Readout Mirror Box Design

Changes Since Last Time

- Lowered the initial spreading, as optical aberration is accounted for geometrically
- I had been double counting it by adding the spread
- Improved resolution all around
- Examine how moving the PMT plane closer and further affects resolution
- Looking at a third type of mirror: a three segment mirror

Pi/K Separation (mrad) versus Liquid Index of

Refraction

- This plot assumes 100% transmission for the liquid (not true in oil)
- Uses a focusing mirror
- Surprisingly, the separation improves as the index gets further from that of quartz
- Apparently due to the separation increase being larger than the spreading increase
- Would also be strongly impacted by the fact that oil loses 20-30\% of the photons - the separation scales with inverse sqrt(n) as expected
- Instead of 2.15 mrad, matching oil is at 2.45 mrad
- Conclusion: Water is cheaper and has better performance

1.20	1.30	1.40	1.50

Segmented Mirror

- The cylindrical mirror may be hard (and/or expensive) to manufacture and calibrate
- Also worse separation than a flat mirror
- Therefore, compromise with multiple segments (per Mike)

Examining patterns

- For reference, a pion at 4.5 Gev and several angles were thrown
- Perpendicular
- Theta $=7$ degrees phi $=0$ degrees
- Theta $=4$ degrees phi $=40$ degrees
- Distributions on the following slide
- Overlaid with the separation power at these angles

Focusing Mirror

xy val of intercepted points - pion

xy val of intercepted points - pion

xy val of intercepted points - pion

Flat Mirror

xy val of intercepted points - pion

xy val of intercepted points - pion

3 Segment Mirror

xy val of intercepted points - pion

xy val of intercepted points - pion

Path Length Considerations

- The flat mirror achieves a separation of 1.6 mrad to the focusing mirrors 1.9, but at a cost of $\sim 70 \%$ more PMT area
- Therefore, try moving the PMT plane closer and further to see the effect on both separation and PMT coverage
- PMT coverage is reported as mm of completely covering y height - for reference, the original design with 300 mm of PMTs has a value of 360 mm in this variable
- Test with perpendicular tracks

Angular Separation versus PMT area size

Separation versus change in photon path length

Path Length Conclusion

- For a given PMT area size, the 3 segment mirror provides a better angular separation than either the flat mirror or the focusing mirror
- Best of both worlds (in the perpendicular case)
- Should also be easier to manufacture/calibrate
- Try other "curvatures" of the 3 segment mirror to improve

Three Segment Curvature Studies

Three Segment Mirror PMT Height (mm) versus "radius" change (mm)

Separation Power (mrad) versus PMT area Height (mm)

- For a perpendicular track, increasing the curvature into which the 3 segments are inscribed has no effect on the separation, but reduces the required PMT area significantly
- Have not run this for off angle tracks - likely that they will see some negative effect, as they have more over lap
- Marked the amount of area needed by focusing PMTs

Effect of the PMT resolution

Pi / K Separation (mrad) versus pixel size (mm)

- Plot to the left is for a flat mirror with perpendicular tracks
- Minimal effects on resolution up to 1015mm
- Will run for the 3 segment mirror soon

