Readiness Review: Testing of Light Sensors for BCAL

Will Brooks, on behalf of the USM/SiLab team

Agenda

All meetings in T-building conference room

08:30 (06:30 JLab) - Arrival 09:00 (07:00 JLab) - Project Overview Scope of Contract and Current Review Status of Equipment **Training of Personnel Testing Procedures** Storage and Shipping to Jefferson Lab. (Storage at JLab?) 10:00 (08:00 JLab) - Description of Test Setup / Analysis Description of light source Test conditions How to determine parameters from data Comparison of SiPM specifications between USM and JLab measurements Archiving of SiPM parameters 10:30 (08:30 JLab) - Break 11:00 (09:00 JLab) - Review of Technical Contractual Documents **Final Construction Plan** Quality Assurance and Acceptance Test Plan Feedback and Questions from QA team **Schedule Review of Milestones** 12:00 (10:00 JLab) - Financial, Billing and Reporting (video conference with JLab)(closed session, JLab and USM management) Meet with (Contract Officers) from the Sponsored Research Office Procurement Requirements, Billing and Invoicing **Official Schedule and Tracking** 12:30 (10:30 JLab) - Lunch 16:00 (14:00 JLab) - JLab Executive Session (closed session, JLab)

2

Staff and Roles

- Director, SiLab Detector Laboratory: Sergey Kuleshov
- Head engineer: Alam Toro
- Production manager: Pablo Viveros
- Project engineering: Orlando Soto, René Rios, Rimsky Rojas
- Software coordination: Hayk Hakobyan
- Software engineering: Ricardo Oyarzún, Juan Pavez
- Director, CCTVal: Ivan Schmidt
- Business and Projects Management, CCTVal: Francisco Soto

3

- Administrative: Alison Sherman, Cynthia Sánchez
- Project Coordination: Will Brooks

4

- Scope of Contract and Current Review:
 - Contract:
 - purchase 2800 MPPCs from Hamamatsu
 - measure characteristics of MPPCs according to the testing plan given in Table 2 (in following slides)
 - determine whether each MPPC meets specifications in Table 1 (subsequent slides) or not
 - ship tested MPPCs to JLab and provide all technical documentation
 - adhere to the schedule, particularly the delivery milestones

Quantities Characterized in Tests, page 1

#	Property	Testing plan				
1	Gain at nominal operating voltage	All cells at 2 temperatures				
2	Photo-sensitive area > 144 mm ²	Microscope inspection, all arrays				
3	Macroscopic active area coverage > 75%	Microscope inspection, all arrays				
4	Number of micro-pixels > 56000	Estimate lower limit from linearity measurement				
5	Sensitivity to magnetic field	Unmeasured, Hamamatsu exception				
6	PDE at 490 nm	3 MPPCs of 32 measured directly, estimate for the remainder				
7	Dark rate	All cells at 2 temperatures				
8	Dark current	All arrays at 2 temperatures				
9	Sensitivity to temperature	All cells at operating voltage and 5°C				
10	Maximum output difference of any cell within one array from the array's average	All arrays, operating voltage and 5°C				
11	Variation of the average output of arrays under uniform illumination at their nominal operating voltage	All arrays at 5°C				
12	Nominal operating voltage	All arrays at 5°C				

11 under uniform illumination at their

All arrays at 5°C

nominal operating voltage Quantities Characterized in Tests, page 2

13	Nominal operating voltage is above breakdown voltage by 0.9-3.0V	All arrays at 5°C
14	Fraction of multiple photoelectrons in dark noise < 5%	All cells at 2 temperatures
15	Package dimensions	Microscope inspection, all arrays
16	Package substrate	Reference to HAMAMATSU model #
17	Inputs (sign of bias voltage)	All arrays
18	Outputs (16 individual outputs)	All arrays
19	Output connector	Reference to HAMAMATSU model # and microscope inspection, all arrays
20	Rise time 10%-90%	All cells
21	Pulse width 10%-10%	All cells
22	Sensitivity of signal-to-noise to radiation	Unmeasured, Hamamatsu exception

Table 2. Mapping between specification document and unit testing plan. Each row matches a row in Table 1. In the table, "all arrays" means 2800 MPPC arrays, and "all cells" means 2800x16 MPPC array cells.

MPPC Specifications, page 1

Table 1. Technical requirements for silicon photomultiplier arrays for the Hall D BCAL. All requirements must be met at the nominal operating voltage and at a specified temperature in the range between 5 and 30° C.

Property	Specification
Gain at nominal operating voltage	(0.5–2)x10 ⁶
Photo-sensitive area	>140 mm ²
Macroscopic active area coverage	> 75%
Number of micro-pixels	> 56000
Sensitivity to magnetic field	< 1% gain change at 2 T independent of orientation
PDE at 490 nm [Note 1]	> 19 % [Note 2]
Dark rate	< 100 MHz [Note 2]
Dark current	< 40 μA
Sensitivity to temperature	< 10% charge amplitude change/deg C
Maximum output difference of any cell within one array from the array's average	<+/- 7.5%
Variation between average output of arrays under uniform illumination at their nominal operating voltage	<+/- 5%

MPPC Specifications, page 2

Nominal operating voltage	25-80 V				
Nominal operating voltage above breakdown voltage	0.9–3.0 V				
Fraction of multiple photoelectrons in dark noise	< 5%				
Package dimensions	See Drawing D00000-01-07-3000				
Package substrate	Al ₂ O ₃				
Inputs	Positive bias voltage				
Outputs	16 individual outputs				
Output connector	Cu alloy pins on 0.05" centers				
Rise time 10%–90%	< 16 ns [Note 3]				
Pulse width 10%–10%	< 100 ns				
Sensitivity of signal-to-noise to radiation	< 1%/Gy				

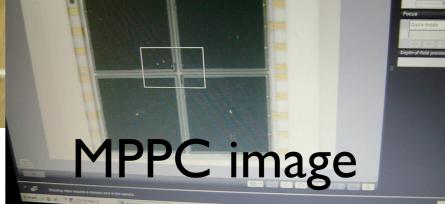
[Note 1] The PDE measurement is made in pulsed mode.

[Note 2] There is a tradeoff between specific values of PDE and dark current to obtain a fixed detector resolution. The tradeoff is made explicit in the following equation: PDE > $0.0518 + \sqrt{(0.002685 + 0.01629 \cdot DR(MHz)/100)}$, where the dark rate DR is given in MHz; [Note 3] Measured with a light input pulse of less than 7 ns.

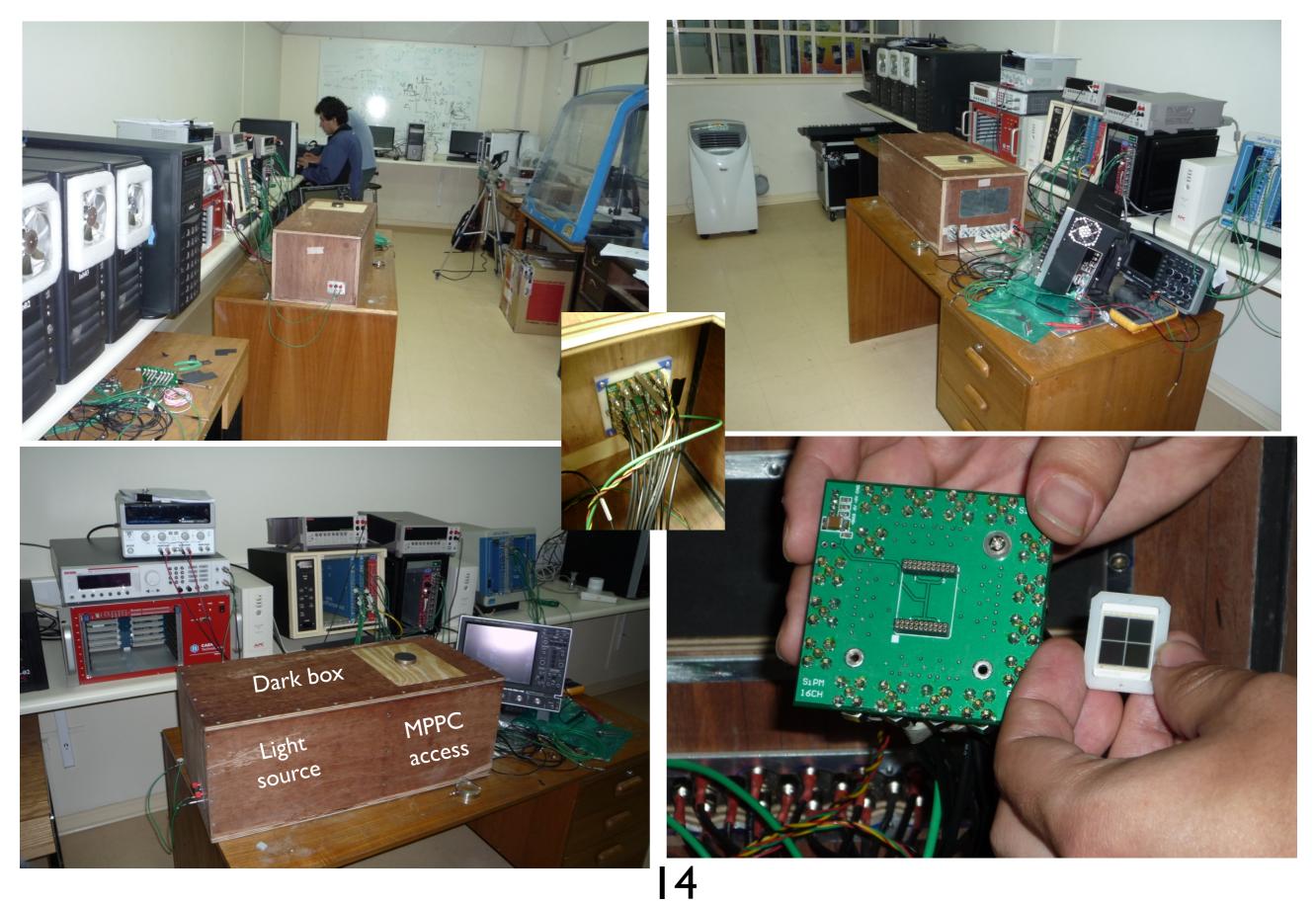
- Scope of Contract and Current Review, continued:
 - Review:
 - Determine whether or not USM is sufficiently prepared to begin production testing
 - Primary basis for permission to proceed

- Status of Equipment: all equipment is ready
 - Station I: visual inspection station is in use, photographs are put in database, operator-database interface is in use, comments are stored in database.
 - Station II: PDE station is in use, taking data with LED/ green-fiber light source, storing spectra in database; pulse characteristics can be determined.
 - Station III: 32-MPPC station is in use, can take data with 30 MPPCs, can change temperatures over wide range, can measure and store I-V curves, can store spectra from variable-intensity LED pulses in database.

Layout of two rooms for MPPC tests



Camera lens and light sensor


Inspection Station (Stage I)

Fire-resistant safe containing MPPCs

Camera setup



PDE Station (Stage II)

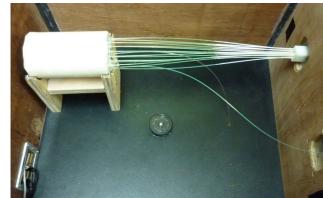


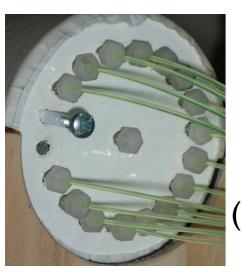
Temperature-Controlled Station (Stage III)

- Status of Equipment: known items needing to be addressed
 - Thermal connection MPPC to copper plate: need silicone pads
 - Temperature measurement of copper plate: can take data as is (measured at 16 points on plate), but final calibration method still under discussion
 - Inspection station needs faster computer 20 Mbyte digital images handled too slowly to be practical
 - New holders for MPPCs to be completed (I-2 days)
 - Would like to get fully calibrated photodiode

- Training of Personnel
 - All personnel currently involved have been the people who developed the hardware and software. Currently we have:
 - Two operators for Stage 3 (Alam and Orlando)
 - One operator for Stage 2 (Rimsky)
 - One operator for Stage I (René)
 - As production begins, will hire more people as needed
 - Training consists of explanation of procedures and two or more "shadow shifts"
 - Completion of training of new operators is certified in writing by existing operator and counter-signed by Sergey Kuleshov, Alam Toro, and Pablo Viveros 17

- Storage and Shipping to Jefferson Lab. (Storage at JLab?)
 - MPPCs are kept in fire-resistant safe in a locked room next to visual inspection station
 - Shipping to JLab is via FedEx, with whom CCTVal has a contract:
 - This contract has been exercised via shipping of MPPCs from Hamamatsu
 - Customs issues have been addressed
 - ~1.5 weeks door-to-door including customs


- Description of light source
 - Light source for PDE station: blue LED illuminating green fibers (LED - clear fiber - mixer - 17 fibers out)
 - See picture next page for PDE station
 - Light source for temperature-controlled station is a green LED with a variable current driver, and a diffuser, at a distance 1.5 meters from MPPCs



PDE Station Light Source

Recessed positioner; fibers on this side, MPPC on other side

Light mixer (clear fiber goes into center)

I-fiber input, 17fiber output 16 to MPPC, 17th to monitor PMT

Blue LED feeding clear fiber

Output of 16 green fibers following mixer

PDE station - Fiber Light Uniformity

- Use each cell in MPPC as individual PIN diode
- Illuminate cell with output fiber of USM light mixer
- Interpret cell-to-cell current, normalized to independent PIN diode, as the uniformity of out put of USM light mixer

PDE station - Fiber Light Uniformity

1	(0 2	4	6	8	10 12	14	16	18	8		
	0.74 -					, ,						
	0.76 -							• •				
	0.78 -											
		• •	• •									
ati	0.8											
atio of	0.82 -											
	-									•	Seri	es1
, i	0.84 -											
currents	0.86											
9	0.86 -											
	0.88 -											
1						• • •						
1	0.9 -				0							
-	0.92 -											
-	0.00											
-			ME	PPC curren	t divided b	y PIN diod	le curre	nt				
-2		1	0.97	97.5	87		measure a	after all of the res	t			
1-4		1	0.9	97.5	73.82	0.75712821						
1-3			0.91	97.55	73.82	0.75674013						
1-2			0.92	97.6	73.84	0.75655738						
-1			0.93	97.74	73.8	0.75506446						
3-4			1.11	97.35	86.8	0.89162815						
3-3			1.13	97.45	86.9	0.89173935						
3-2		1	1.17	97.4	86.9	0.89219713						
3-1			1.23	97.38	88.1	0.90470322						
2-4			1.1	97.39	80.2	0.82349317						
2-2			1.12	97.49	80.22	0.82285363				4-1		3-2
2-1 2-2			1.14	97.5	80.28	0.82296258				4-1	3-4	3-1
2-1			1.14	97.55	80.28	0.82296258				2-1		1-1
L-3 L-4			1.15 1.14	97.7 97.55	77.15 77.1	0.78966223			2.4	2-1	1-4	1-1
1-2			1.12	97.6	77.01	0.78903689		MPPC matrix				
1-1			1.09	97.5	76.88	0.78851282						
:h		Ipin diode Pedestal [uA]		Ipin diode [uA]	I MPPC [nA]	current to PIN diode current						

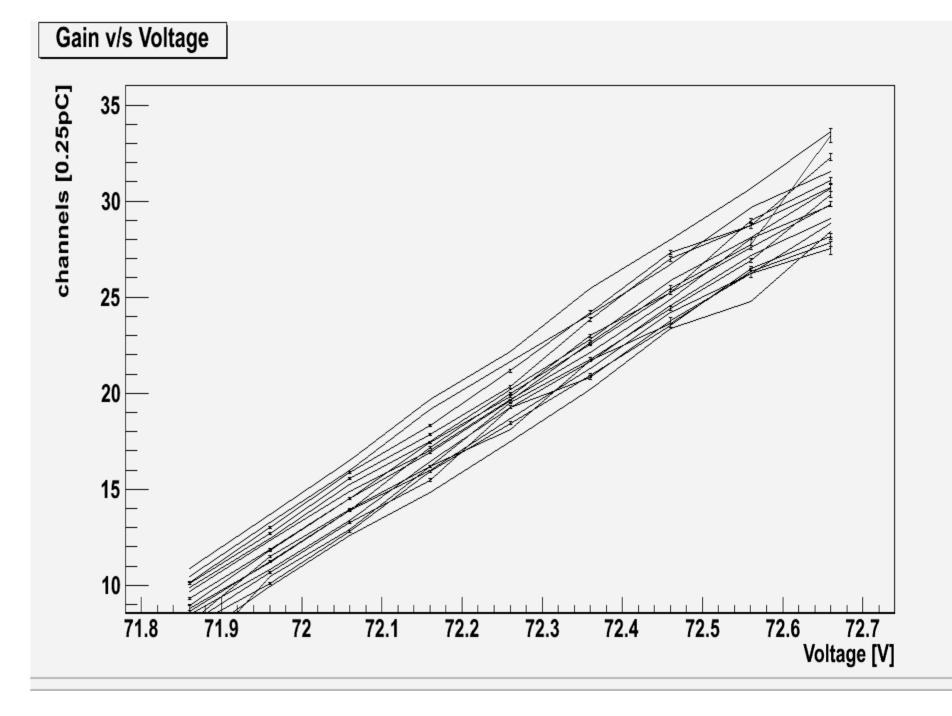
- Test conditions: <u>PDE station</u>
 - Fixed amount of light, room temperature, I MPPC
 - Light from fibers measured by monitoring PMT and 16 MPPC cells
 - Measure fast light pulse amplitudes and pulse shape characteristics
- Test conditions: <u>Temperature-controlled station</u>
 - Variable amount of light, fixed temperature, 32 MPPCs
 - Several MPPCs with precisely measured PDE to crosscalibrate the rest
 - Measure fast light pulse amplitudes and I-V curves

- How to determine parameters from data
 - Gain
 - Determine breakdown voltage by extrapolating oneelectron peak signal vs. voltage to zero. Operate at fixed voltage above breakdown voltage.
 - At operating voltage, determine spacing between nelectron peaks, convert to charge equivalent, normalize to electron charge
 - Dark current/rate
 - Measure DC current directly
 - Measure rate in a gate of known length

- How to determine parameters from data, continued
 - PDE
 - Using light splitter of measured uniformity, put equal amounts of light into each of 16 MPPC cells and into one PMT
 - Determine PMT calibration from 1-photoelectron peak, use as constant monitor
 - Determine absolute light calibration from silicon device of known efficiency
 - Other quantities: see posted writeup for complete explanation

- Comparison of SiPM specifications between USM and JLab measurements
 - PDE measurements consistent with ~20%
 - Calibrated photodiode will provide optimal normalization
 - Gain vs. voltage measured to determine breakdown voltage, see subsequent slides
 - First gain, dark rate, crosstalk measurements on following slide

First look at comparing JLab measurements with USM's


(note, 100 ns gate at USM vs 1000 ns gate at JLab)

Position	MPPC S/N	UTFSM Gain	Jlab Gain	UTFSM dark rate	Jlab dark rate		Jlab Crosstalk + Afterpulses
4	95	5.1	5.63	0.78	1.2	0.34	0.16
5	96	5.1	5.45	0.83	1.1	0.37	0.14
6	86	4.8	5.63	0.81	1.2	0.34	0.16
7	87	5.5	5.64	0.75	1.2	0.39	0.15
8	88	5.0	5.64	0.73	1.0	0.34	0.15
9	89	5.1	6.62	0.71	1.2	0.35	0.16
10	90	5.7	5.61	0.88	1.0	0.36	0.15
12	64	4.7	5.48	0.69	1.1	0.32	0.14
13	65	5.0	5.65	0.78	1.1	0.31	0.16
14	66	5.0	5.45	0.78	1.1	0.30	0.14
25	70	6.5	5.65	0.56	1.1	0.36	0.16
26	72	5.6	5.55	0.63	1.1	0.36	0.14
31	57	4.9	5.73	0.61	1.2	0.32	0.17

First look at gain vs. voltage from PDE station for MPPC #39

Break Down Voltage ch1:71.4802 Break Down Voltage ch2: 71.5453 Break Down Voltage ch3: 71.5225 Break Down Voltage ch4: 71.5724 Break Down Voltage ch5: 71.4843 Break Down Voltage ch6: 71.5491 Break Down Voltage ch7: 71.4902 Break Down Voltage ch8: 71.5523 Break Down Voltage ch9: 71.5299 Break Down Voltage ch10:71.5837 Break Down Voltage ch11:71.5117 Break Down Voltage ch12:71.581 Break Down Voltage ch13:71.4807 Break Down Voltage ch14:71.551 Break Down Voltage ch15:71.4737 Break Down Voltage ch16:71.4734

all this for mppc N° 39

- Archiving of SiPM parameters
 - MySQL database with RAID backup
 - Interfaces for each of the three stations for manual and automated entry of data
 - Web interface

Data from database available via the web <u>here</u>

- Commissioning plan
 - Cross-check of JLab and Hamamatsu numbers for the 30 MPPCs sent from JLab
 - Calibrate PDE for 32 MPPCs, install all 32 into temperature-controlled darkbox
 - Determine light intensity pattern
 - Determine temperature uniformity?
 - Measure all properties, 3-4 different temperatures
 - Rearrange the same set of 32 MPPCs
 - Re-measure all properties, check for consistency
 - Re-arrange and repeat until consistency verified