Using the TOF for Triggering the CPP Experiment

From April 8, 2016

The accidental rate between the i^{th} and j^{th} paddles is given by:

$$Acc(x_i, x_j) = R(x_i)R(x_j)\Delta t$$

Calculate how much of the rate $Acc(x_i, x_j)$ satisfies acceptance requirements:

- 1. Two paddles in the front array fire, and two paddles in the back array fire
- 2. R > 18 cm
- 3. $\cos \theta < -0.7$
- 4. Exclude a range of central paddles from the trigger

Let $\varepsilon(x_i, x_j)$ = fraction of Acc (x_i, x_j) that satisfies these requirements.

To find $\varepsilon(x_i, x_j)$, need to know the rate as a function of x and y. Postulate that:

$$Rate(x,y) = \frac{A_1}{2\pi\sigma_1^2} e^{-(x^2+y^2)/(2\sigma_1^2)} + \frac{A_2}{2\pi\sigma_2^2} e^{-(x^2+y^2)/(2\sigma_2^2)} + B$$

Then the rate in paddle x_i is given by:

$$R(x_i) = \int_{-L/2}^{L/2} Rate(x_i, y) dy = \frac{A_1}{\sigma_1 \sqrt{2\pi}} e^{-x^2/(2\sigma_1^2)} + \frac{A_2}{\sigma_2 \sqrt{2\pi}} e^{-x^2/(2\sigma_2^2)} + BL$$

Fit TOF data with the form above.

TOF rates with solenoid on, 3.4 mm collimator

Lognumber 3393177. Submitted by Elton on Tue, 03/29/2016 - 08:28.

Logbooks: HDLOG HDTOF

References: <u>3392794 - TOF rates with solenoid off</u>

Nominal running with amorphous radiator, 3.4 mm collimator, 200 nA beam TOF scaler rates are about 1 MHz. We need to check the threshold and compare to trigger thresholds.

Fitted TOF rates:

• For a given x_i , draw y from the fitted probability distribution

$$Rate(x,y) = \frac{A_1}{2\pi\sigma_1^2} e^{-(x^2+y^2)/(2\sigma_1^2)} + \frac{A_2}{2\pi\sigma_2^2} e^{-(x^2+y^2)/(2\sigma_2^2)} + B$$

- Calculate $\varepsilon(x_i, x_j)$ by testing many events
- Total rate is given by: $Rate = \frac{1}{2} \sum_{i \neq j} Acc(x_i, x_j) \varepsilon(x_i, x_j)$

es turned off	dles turned off	200 Ame 3.4 20 r Unk	200 nA Amorphous radiator 3.4 mm collimator 20 ns coincidence window Unknown scintillator thresholds				
Vertical paddle	Horizontal pac	R cut (cm)	Cos min	Cos max	Rate (kHz)		

none	none	none	none	none	146
none	none	18	-0.9	0.0	57
22,23,24,25	22,23,24,25	none	none	none	23
22,25	22,25	none	none	none	70.3
22,25	22,25	none	-0.9	0.0	32.8
22,25	22,25	18	none	none	53.1
22,25	22,25	18,	-0.9	0.0	29.8
22,25	22,25	none	-1.0	0.0	40.4
21,26	21,26	none	none	none	61
21,26	21,26	none	-0.9	0.0	32.5

From Ilya's and Sasha's beam test:

TOF trigger rates vs beam current and TOF threshold. Reduction factor with applied offline cuts

Beam current	50nA	95nA	145nA	
DAQ rate	51kHz	136kHz	235/191/157kHz 30/60/90mV	ノ
At least 2 hits in each plane (cumulative with the cuts below)	90%	89%	88%	
2 TOF reconstructions	94%	90%	87%	
2 TOF reconstructions R>18cm	61%	57%	55%	
2 TOF reconstructions out of 18x18cm center	80%	75%	73%	
2 TOF reconstructions out of 18x18cm center R>18cm	47%	44%	42%	

I. Larin June 2018 GlueX Collaboration Meeting

- Rate is dominated by linear current effect up to 65 nA.
- Beyond 65 nA the rate is dominated by quadratic current effect.

Tentative conclusions:

- At currents below about 65 nA the rate is mostly from track pairs, ... presumably e⁺e⁻ pairs?
- At currents above about 65 nA the rate is mostly from accidental coincidences between paddles in the front TOF array. Presumably these hits are e⁺ and e⁻

Questions:

- Can we run with a coincidence window of 20 ns or lower in the triggering to suppress the quadratic current background?
- We don't need to read out CDC, BCAL or START counter. Does this allow for a higher trigger rate?
- What's the highest trigger rate that we can run at?
- Need to understand the difference in trigger rates between running amorphous on hydrogen and coherent bremsstrahlung on Pb (or other high Z) target pulled back.
 - The difference in trigger rate between hydrogen and Pb targets should be difference in radiation length
 - What's the difference in trigger rate between 1/k Brem.
 distribution, and a coherent peaked distribution?
 - What's the effect of pulling the target back? If have a 18 x 18 cm² hole in the TOF and then pull the target back to Z=1 cm, are we just undoing the "good" obtained from the larger hole in the TOF?