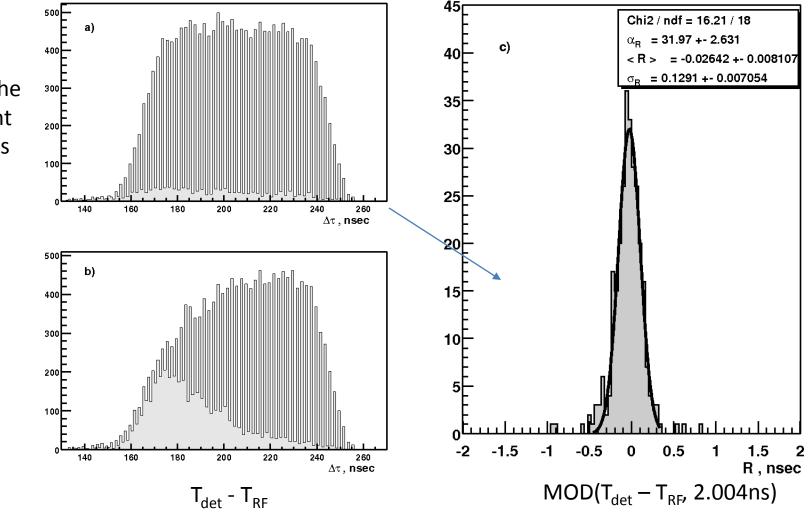
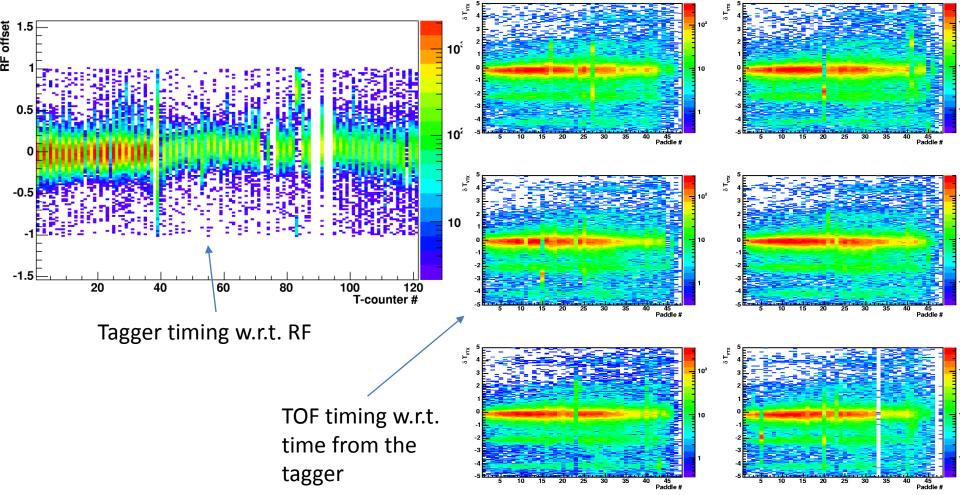
RF Signal for Hall D


Hovanes Egiyan

Use of RF signal


- Use as reference time to calibrate time delays of various counters.
 - Align the individual detectors to any of the RF pulses
 - Resolve the multiples of the beam bunch time periods using coincidences between detectors.
 - Not much statistics is needed for picking out the bunch.
- Use for determining the start time of the events in GlueX with ~15ps resolution by taking out the 200 ps tagger time resolution in the TOF-based PID procedures.
 - Tagger (all counters) should be aligned with respect to the RF-signal in the tagger hall on a runby-run basis.
 - Timing PID detectors in Hall D should be aligned to the RF-signal in the hall.
 - Calibrate the delay between Hall D and the tagger hall for each run.
 - The procedure for Hall B electron runs can be found at :<u>http://www.jlab.org/Hall-B/notes/clas_notes98/note98-004.pdf</u>. The procedure for Hall B photon runs is even a little simpler.
- RF-signal needs to be prescaled to have ~10MHz rate to work with TDCs.
 - Can have ~3 pulses in each event to use as a reference and to check the TDC calibration.

Calibration plots from CLAS

The fence structure in the multiple event data sample is due to the prescaling

Calibration plots from CLAS

 Plots shown here already look relatively nice since the timing has previously been calibrated.

Options

- We will get 500MHz (or 250MHz later) beam bunches from injector.
- 10 MHz, 70 MHz, 499 MHz, 1427 MHz synchronized with the laser at the injector.
- There will be a long cable(s) to bring the RF signal to Hall D complex.
 - Expect 6ps/ft/^oC variations in the in the phase due to the contraction of the cables under temperature variations, which for a 1000 ft and ~2 ^oC temperature change during one run would translate into 12 ps phase drift.
- The accelerator division has schemes of adjusting the phase of the RF using feedback or feed-forward, but they might be costly.
 - Neither in the accelerator's nor in the Hall D 12GEV schedule.
- Hall B uses an RF-cable carrying 499 MHz signal without any compensation for phase drifts, digitizes and prescales it by a factor of 40, and corrects the RF-offset constant offline on a run-by-run basis.
 - Hall D probably should simply do the same with customized prescale factor.
 - Sergey Kuleshov from Santa Maria volunteers to build the digitizing and prescaling boxes.
 - If the beam is 249 MHz, the extra RF-pulse can be prescaled out in the digitizing box. The sudden jumps in the RF-phase due to the ambiguity can be threated by the same RF-calibration constant.
- Your thoughts?