Extraction of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$contribution

May 3, 2013

Let's assume that N is the flux-normalized unpolarized yield of the events that we selected as the events corresponding to $\pi^{+} \pi^{-}$production. Then,

$$
\begin{equation*}
N=N_{\pi \pi}+N_{\rho}+N_{\mu \mu} \tag{1}
\end{equation*}
$$

where $N_{\pi \pi}, N_{\rho}$ and $N_{\mu \mu}$ are contributions of the Primakoff $\pi^{+} \pi^{-}$photoproduction, coherent ρ^{0} and coherent $\mu^{+} \mu^{-}$, respectively. We know that (or assume that?) for a given E_{γ} and $\theta_{\pi \pi}$

$$
\begin{align*}
& N_{\pi \pi}^{\text {pol }}(\varphi) \propto N_{\pi \pi}(1+\cos 2 \varphi) \tag{2}\\
& N_{\rho}^{\text {pol }}(\varphi) \propto N_{\rho} \tag{3}\\
& N_{\mu \mu}^{\text {pol }}(\varphi) \tag{4}
\end{align*} \propto N_{\mu \mu}(1-\cos 2 \varphi)
$$

and

$$
\begin{align*}
& N_{\pi}^{p o l}(\psi) \propto N_{\pi \pi} \tag{5}\\
& N_{\rho}^{\text {pol }}(\psi) \propto N_{\rho}(1+\cos 2 \psi) \tag{6}\\
& N_{\mu \mu}^{\text {pol }}(\psi) \propto N_{\mu \mu} \tag{7}
\end{align*}
$$

We can measure φ - and ψ-dependences $N^{h}(\varphi), N^{h}(\psi)$ and $N^{v}(\varphi), N^{v}(\psi)$ of the $\pi^{+} \pi^{-}$yields for horizontally and vertically polarized photons. Omitting the constant coefficients, one can write

$$
\begin{align*}
& N^{h}(\varphi)=N_{\pi \pi}(1+\cos 2 \varphi)+N_{\rho}+N_{\mu \mu}(1-\cos 2 \varphi) \tag{8}\\
& N^{v}(\varphi)=N_{\pi \pi}(1-\cos 2 \varphi)+N_{\rho}+N_{\mu \mu}(1+\cos 2 \varphi) \tag{9}\\
& N^{h}(\psi)=N_{\pi \pi}+N_{\rho}(1+\cos 2 \psi)+N_{\mu \mu} \tag{10}\\
& N^{v}(\psi)=N_{\pi \pi}+N_{\rho}(1-\cos 2 \psi)+N_{\mu \mu} \tag{11}
\end{align*}
$$

From this we get

$$
\begin{align*}
& N^{h}(\varphi)+N^{v}(\varphi)=2 N_{\pi \pi}+2 N_{\rho}+2 N_{\mu \mu} \tag{12}\\
& N^{h}(\varphi)-N^{v}(\varphi)=2 N_{\pi \pi} \cos 2 \varphi-2 N_{\mu \mu} \cos 2 \varphi \tag{13}\\
& N^{h}(\psi)+N^{v}(\psi)=2 N_{\pi \pi}+2 N_{\rho}+2 N_{\mu \mu} \tag{14}\\
& N^{h}(\psi)-N^{v}(\psi)=2 N_{\rho} \cos 2 \psi \tag{15}
\end{align*}
$$

Solving this system of equations we get

$$
\begin{equation*}
\frac{N^{h}(\varphi)-N^{v}(\varphi)}{N^{h}(\varphi)+N^{v}(\varphi)}=\cos 2 \varphi\left[2 f_{\pi \pi}-1-\frac{1}{\cos 2 \psi} \frac{N^{h}(\psi)-N^{v}(\psi)}{N^{h}(\psi)+N^{v}(\psi)}\right] \tag{16}
\end{equation*}
$$

where $f_{\pi \pi}=N_{\pi \pi} / N$ is the parameter that we need to find from the fit.

