Probing QCD in the nuclear medium with real photons and nuclear targets at GlueX

Jefferson Lab Thomas Jefferson National Accelerator Facility

Maria Patsyuk

Photonuclear reactions

Fundamental QCD:

- 1. Photon Transparency
- 2. Color Transparency

Nuclear Structure:

3. Short-Range Correlations

Photon = superposition of moderate mass mesons

Probe Energy

Photon = point-like particle

Photon = superposition of moderate mass mesons

Probe Energy

Photon = point-like particle

Transition expected at $|t| \sim 2 \text{ GeV}^2$. May depend on quark composition (π vs. η), spin (π vs. ρ), Probed via transparency and A-dependence: T= σ_{YA} /A σ_{YN}

Photon = superposition of moderate mass mesons

Probe Energy

Photon = point-like particle

Photon = superposition of moderate mass mesons

Probe Energy

Photon = point-like particle

Photon = superposition of moderate mass mesons

Probe Energy

Photon = point-like particle

nucleons in compact configurations \rightarrow color transparency (CT)

Photon transparency / photon structure in QCD?

Two Observables that can separate hard/soft interactions:

- 1. 'Absolute' transparency for a given nucleus
- 2. A-dependency (i.e. ratio for different nuclei)

$$T = \sigma_{YA} / A \sigma_{YN}$$

Nuclear (color) transparency

A. Larionov and M. Strikman, Physics Letters 2016 + private communication

Short-Range Correlations

Nucleons form pairs with high relative momentum and low c.m. momentum compared to $k_F - SRC pairs$

Very strong short-range interaction between nucleons → sub-nucleon structure of SRC-nucleons might be modified compared to a free nucleon

Why photons for SRC?

Exclusive scattering of a real photon on a nucleus

- Complements the set of different probes (verification of reaction mechanism)
- Hard reactions
- γp scattering (σ ~ s⁻⁷) selects mostly forward going high momentum nucleons (SRC)
- Interact with neutron leading to charged final state ($\gamma n \rightarrow \pi^{-} p$)

Reactions of interest

Exclusive Proton Reactions	Exclusive Neutron Reactions	Targots
$\gamma + p \rightarrow \pi^0 + p$	$\gamma + n \rightarrow \pi^{-} + p$	Taigets.
$\gamma + p \rightarrow \pi^- + \Delta^{++}$	$\gamma + n \rightarrow \pi^- + \Delta^{++}$	D
$\gamma + p \rightarrow \rho^0 + p$	$\gamma + n \rightarrow \rho^{-} + p$	4
$\gamma + p \rightarrow K^+ + \Lambda^0$	$\gamma + n \rightarrow K^0 + \Lambda^0$	*He
$\gamma + p \rightarrow K^+ + \Sigma^0$	$\gamma + n \rightarrow K^0 + \Sigma^0$	¹² C
$\gamma + p \rightarrow \omega + p$	x	⁴⁰ Ca
$\gamma + p \rightarrow \phi + p$	x	

1. Raffle a nucleon from a correlated Fermi-Gas model and a photon from the GlueX beam:

- 1. Raffle a nucleon from a correlated Fermi-Gas model and a photon from the GlueX beam
- 2. Get the cross-section for ($\gamma n \rightarrow \pi^{-}p$) elastic scattering:

- 1. Raffle a nucleon from a correlated Fermi-Gas model and a photon from the GlueX beam
- 2. Get the cross-section for $(\gamma n \rightarrow \pi^{-}p)$ elastic scattering
- 3. Boost to the c.m. and do scattering for angles of $40^{\circ} 140^{\circ}$. Keep only events with $|t|, |u| > 2 \text{ GeV}^2$

4. Boost back to the laboratory frame

Event selection for two regimes of interest

Maria Patsyuk, MIT

Detection Efficiency Simulations

 $\gamma + n \rightarrow \pi^{-} + p$ (smallest expected rate)

40 days of beam, 4 targets

Detection efficiency:

80% → each of leading particles 65% → recoil proton (SRC) 30% → reconstruction of ρ^0

Nuclear attenuation: $\sigma \sim A^{-1/3}$

Detection Efficiency Simulations

High |t| = Diamond Radiator

Can not use the whole photon spectrum because of tagger occupancy. **Coherent peak** [8.4, 9.1] GeV, 5 mm collimator – optimized collimation efficiency and high |t| values

Beam optimization: collimator, radiator

Rate optimization for a set of targets

Prioritized list of factors limiting the event rates:

- 1. GlueX detector capabilities: limited flux on target of 2 10⁷ photons/s
- 2. Target thickness \rightarrow electromagnetic background ~ X0
- 3. Neutron background ~ n_cm * A
- 4. Coincidental rate in the tagger (up to 8% for this flux)

Target	Thickness	Atoms/cm3	<u>Em bkg</u>	Neutron
	[cm] / %X0		rel. to	bkg rel. to
			<u>GlueX</u>	<u>GlueX</u>
D	30 / 4.1	$1.51 \ 10^{24}$	0.5	0.5
⁴ He	30 / 4	5.68 10 ²³	0.5	0.5
¹² C	1.9 / 7	1.45 10 ²³	1	0.6
⁴⁰ Ca	0.73 / 7	1.70 1023	1	1.1
LH	30 / 3.4	1.28 1024	1	1

Event rates for all targets / reactions

Rates for the reactions with the smallest and largest cross section

Target	$\gamma + n \rightarrow \pi^- + p$		$\gamma + n \rightarrow \rho^{-} + p$		PAC
	MF	SRC	MF	SRC	days
D	12,500	750	50,000	3,200	5
⁴ He	12,000	3,000	50,000	13,000	8
¹² C	7,300	2,300	31,000	10,000	10
⁴⁰ Ca	2,600	900	11,000	3,500	14
	3				
	40				

Maria Patsyuk, MIT

Nuclear transparency with the $\gamma n \rightarrow \pi^- p$ process in ⁴He

D. Dutta,^{1,2} F. Xiong,² L. Y. Zhu,² J. Arrington,³ T. Averett,^{4,5} E. Beise,⁶ J. Calarco,⁷ T. Chang,⁸ J. P. Chen,⁵ E. Chudakov,⁵

M. Coman,⁹ B. Clasie,² C. Crawford,² S. Dieterich,¹⁰ F. Dohrmann,^{3,*} K. Fissum,¹¹ S. Frullani,¹² H. Gao,^{1,2} R. Gilman,^{5,10} C. Glashausser,¹⁰ J. Gomez,⁵ K. Hafidi,³ J.-O. Hansen,⁵ D. W. Higinbotham,² R. J. Holt,³ C. W. de Jager,⁵

K. Ohnall, W. Highbothall, K. S. Holl, C. W. de Jager, X. Jiang,¹⁰ E. Kinney,¹³ K. Kramer,⁴ G. Kumbartzki,¹⁰ J. LeRose,⁵ N. Liyanage,⁵ D. Mack,⁵ P. Markowitz,⁹ K. McCormick,¹⁰ Z.-E. Meziani,¹⁴ R. Michaels,⁵ J. Mitchell,⁵ S. Nanda,⁵ D. Potterveld,³ R. Ransome,¹⁰ P. E. Reimer,³ B. Reitz,⁵ A. Saha,⁵ E. C. Schulte,^{3,8} J. Seely,² S. Sirca,² S. Strauch,¹⁰ V. Sulkosky,⁴ B. Vlahovic,¹⁵ L. B. Weinstein,¹⁶ K. Wijesooriya,³ C. F. Williamson,² B. Wojtsekhowski,⁵ H. Xiang,² W. Xu,² J. Zeng,¹⁷ and X. Zheng²

(Jefferson Lab E94104 Collaboration)

Summary

 GlueX experiment has a unique beam for photon and nuclear transparency studies, as well as SRC physics

- LOI submitted to PAC 44 includes:
 - (Color) transparency studies
 - Search for SRC pairs
 - In medium modifications of nucleon structure

• Event rates are enough to do excellent physics!

Backups

1. Raffle a nucleon from a correlated Fermi-Gas model and a photon from the GlueX beam:

Factor transforming $d\sigma/dt$ into $d\sigma/d\Omega$

$$t = (\mathcal{P}_{\gamma} - \mathcal{P}_{\pi})^2 = -2\mathcal{P}_{\gamma}\mathcal{P}_{\pi} + m_{\pi}^2$$

 E_i, k_i - center of mass energy and momentum in the initial state. E_f, k_f - center of mass energy and momentum in the final state. In the center of mass system:

$$t = -2E_i E_f + 2k_i k_f \cos \theta_{cm} + m_{\pi}.$$

 $dt = 2k_i k_f d \cos \theta_{cm}$

$$\frac{d\sigma}{d\cos\theta_{cm}} = 2k_i k_f \frac{d\sigma}{dt}$$

$$\frac{d\sigma}{d\Omega_{cm}} = \frac{2k_i k_f}{2\pi} \frac{d\sigma}{dt}$$

$$k_i = \frac{s - 0.94^2}{2\sqrt{s}}$$

$$k_f = \frac{\sqrt{(s - (0.938 - 0.140)^2) \cdot (s - (0.938 + 0.140)^2)}}{4s}$$

S for scattering on a moving SRC pair/MF inside a nucleus

$$s = (E_{\gamma} + E_N)^2 - P_{miss,X}^2 - P_{miss,Y}^2 - (P_{miss,Z} + E_{\gamma})^2$$

where nucleon energy (E_N) is the following:

• **MF**: $P_{miss} < k_F$ (250 MeV);

$$E_N = 0.94 - 0.015 - \frac{P_{miss}^2}{2(A-1)0.94}$$

• moving SRC: $P_{miss} > k_F$, (250 MeV) $P_{cm} > 0$;

$$E_N = 2 \cdot 0.94 - \sqrt{0.94^2 + P_{recoil}^2};$$

Limitations to get physical results

The natural limitations: light-cone momentum fraction (α) of the struck nucleon should be positive:

$$\alpha_{recoil} = \frac{\sqrt{0.94^2 + P_{recoil}^2} - P_{recoil,Z}}{0.94};$$
(12)

$$\alpha_{cm} = \frac{2 \cdot 0.94 - P_{cm,Z}}{0.94} \approx 2; \tag{13}$$

$$\alpha_{miss} = P_{LC,cm} - P_{LC,recoil} > 0.$$
(14)

Also, $P_{miss} < 0.75 \text{ GeV/c}; s > (m_N + m_\pi)^2$.