

Jefferson Lab

Beamline Commissioning and Radiation

A. Somov, Jefferson Lab

E12-19-003 Experiment Readiness Review March 31, 2020

Outline

• Beam Commissiong

(charge 7)

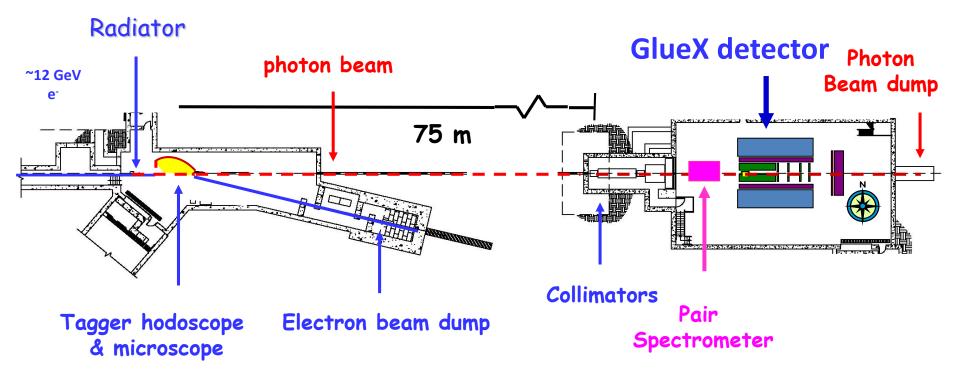
Are the beam commissioning procedures and machine protection systems sufficiently defined for this stage?

• Radiation level

(charge 4)

What is the impact of the expected neutron radiation on GlueX detector components such as the SiPMs? Is any local shielding required? Are the radiation levels expected to be generated in the hall acceptable?

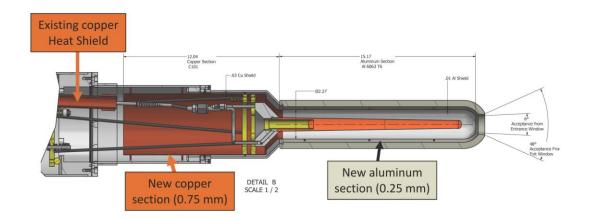
Photon Beam Requirements


Experiment	Energy Range (GeV)	Polarization	Flux in the energy range of interest γ/ sec	Flux on target (0.012 – 11.7 GeV) γ/ sec		
GlueX Design	8.4 - 9.1	40 %	10 ⁸	1.8 ⋅10 ⁹		
GlueX II	8.4 - 9.1	40 %	5 · 10 ⁷	9 · 10 ⁸		
This experiment	8.4 - 9.1	40 %	2 · 10 ⁷	3.6 · 10 ⁸		

	This experiment	GlueX II
Electron beam current:	140 nA	350 nA
Radiator thickness:	$2 \cdot 10^{-4} X_0$	$2 \cdot 10^{-4} \text{ X}_0$
Collimator diameter:	5 mm	5 mm

Photon flux on target is about 2.5 smaller than GlueX II flux (5 times smaller than GlueX designed flux)

Hall D Photon Beam Line


Use standard Hall D beam line equipment for SRC / CT !

Targets

See C. Keith talk

- LD (LHe) target. Standard GlueX target cell and cryogenic system
 LHe targer was used by Hall D PrimEx experiment
- Carbon target
 - Similar to PrimEx Be target

SRC/CT Beamline Summary

- 12 GeV polarized photon beam has been successfully used by the GlueX experiment in 2016 2019
- Typical GlueX beam configurations:
 electron beam current 100 350 nA (data production)
 < 5 nA (PS calibration)
- Beamline equipment installed in Hall D is ready to use by the SRC/CT experiment
- Photon beam conditions used for the GlueX data production satisfied specifications of the RC/CT experiment
- Beam delivery/monitoring procedures and machine protection systems are the same as for the GlueX experiment

Radiation Level in the Hall Charge 4

1000

Y (cm) vertical distance

-400

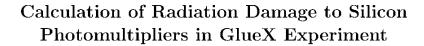
-1000

-500

Neutron fluence in Hall D (1-MeV neutron equivalent in Si)

500

Z (cm) distance along beamline


0

1000

1500

2000

JLAB-TN-11-005 GlueX-doc-1660 Version 0.3 February 23, 2011

P. Degtiarenko, A. Fassò, G. Kharashvili, A. Somov

• Estimated background for the LHe/LD target using Fluka and Geant simulations provided by the JLab Radiation Control group

Neutron background is critical for SiPM operation

equivalent)

dΦ/dt (cm⁻² s⁻¹) (1-MeV n

1e+06

100000

10000

1000

0.01

2500

Targets Run Conditions

Radiation Level in the Hall

FLUKA, Liquid Hydrogen target

Start Counter 20.9					
	1.4	18.4	0.1	0.1	40.9 ± 3.1
BCAL upstream SiPM 2.0	0.1	0.3	0.0	0.0	2.4 ± 0.2
BCAL downstream SiPM 18.2	1.7	1.8	1.1	0.3	23.2 ± 0.6
75 cm downstream from BCAL 16.7	2.2	2.3	18.2	5.6	45.1 ± 1.0

GEANT, Liquid Hydrogen target

75 cm downstream from BCAL 30.5			-	-	-	
	(5 cm downstream from BCAL)	30.5				

FLUKA, Liquid Helium target

Start Counter	112.1	34.8	14.7	0.2	0.1	162.9 ± 5.9
BCAL upstream SiPM	8.0	0.2	0.3	0.04	0.03	8.6 ± 2.2
BCAL downstream SiPM	23.0	2.1	2.2	1.0	0.3	28.7 ± 0.3
75 cm downstream from BCAL	21.1	2.7	2.5	20.1	6.8	53.7 ± 0.9

Table 1: 1-MeV neutron equivalent fluence in units of $n_{cq} \cdot s^{-1} \cdot cm^{-2}$ estimated with FLUKA and GEANT simulations. The fluences were computed in the Start Counter and BCAL SiPM regions. See definitions of the regions in the text.

- SRC/CT beam flux on target is 5 times smaller than that for GlueX

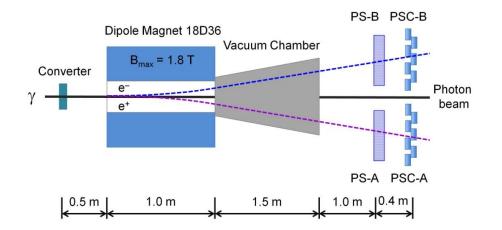
Background induced by the LHe target will not exceed the GlueX level

(RSAD for SRC/CT will be similar to GlueX. It will be coordinated with the RadCon group)

Neutron background was evaluated for the GlueX proposed luminosity

Neutron background induced by the LHe target is about a factor of 4 - 5 larger that for LH₂

Comparison between LHe abn LD Targets

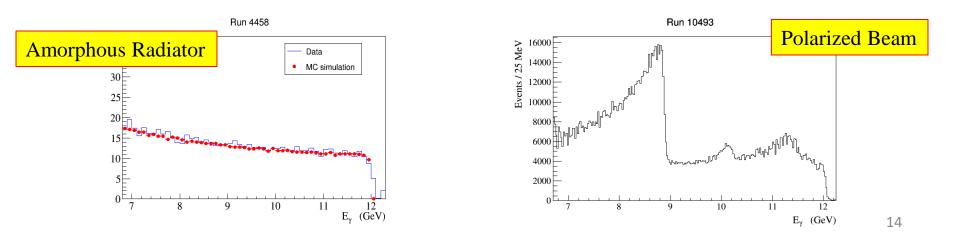

Monitoring SiPM Dark Current

Monitoring Radiation Level in Hall D

- Installed quick access ionization chambers (show locations)
- Install thermoluminescent dosimeters (**TLD**) close to the target
- Install **Bonner spheres** (determine the energy spectrum of neutons) close to the target (coordinate with RadCon group)

Backup Slides

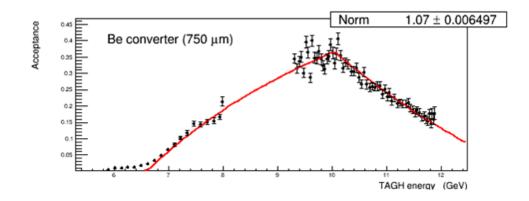
Photon Flux Measurements with Pair Spectrometer



Two layers of scintillator detectors:

High-granularity hodoscope (measure photon energy in the range 6 – 12 GeV)

Low-granularity counters (use in trigger)


- Reconstruct the energy of a beam photon by detecting e^{\pm} pairs
 - measure the photon beam flux and spectrum of the collimated photon beam

Photon Flux Measurements with Pair Spectrometer

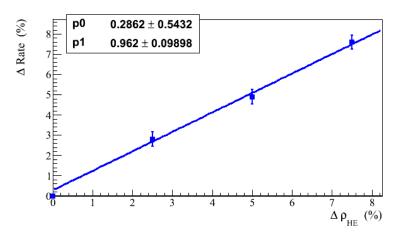
PS acceptance and energy determination

- Ray tracing (measure magnetic field map)
- Calibrate using total-absorption-counters (TAC) at low luminosity

- 3.4 mm collimator , 2 \cdot 10⁻⁵ X₀ radiator, 2 nA beam current

Calibration is performed regularly; takes 2-6 hours - will be performed during PrimEx-D run

(Recommendation 1.5)


- Special trigger type continuous flux monitor (typical rate 1 3 kHz)
 - fadc / CTP scalers inserted to the data stream and EPICS

Monitor the photon flux with the precision < 1 %

Target Density Monitor

- Short term stability control:
 - photon beam flux provided by the PS
 - rates in the Start Counter (ST) and Time-of-Fight (TOF) wall

ST rate dependence on the target density

ST consists of 30 paddles surrounding the target

ST rate for production runs: 250 kHz / paddle

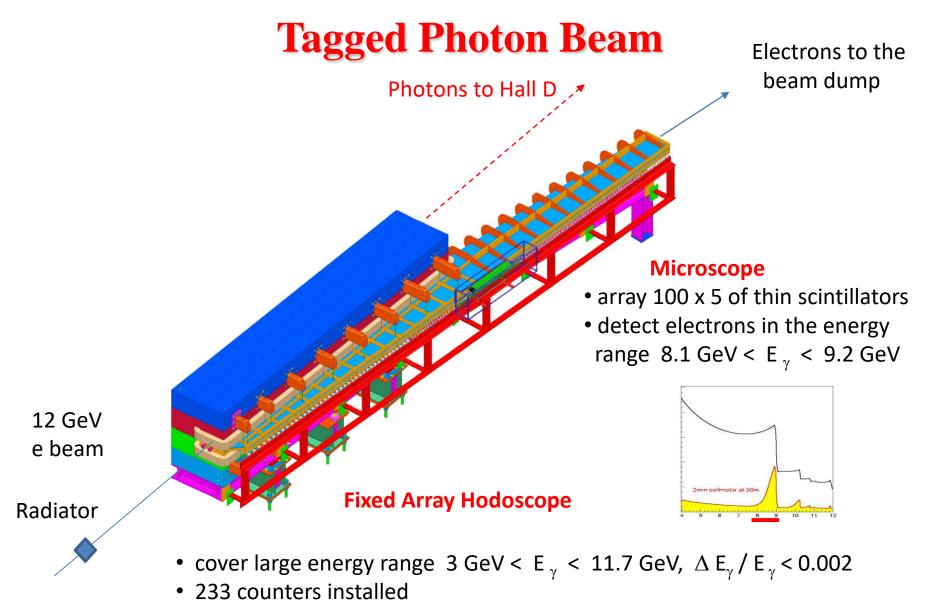
Coincidence of hits between the ST and TOF (2 x 2 bars in TOF at R = 30 cm & one ST paddle) 1.5 kHz

- Long term stability control:
 - monitor using Compton process; expected rate in the photon range of interest is about 30 Hz

Pair Spectrometer Acceptance Calibration

Calibrate PS acceptance using total-absorption counter (TAC)

Data samples were acquired for three converters


- 5.7 x 10⁻³ R.L. Al (508 μm foil)
- 2.1 x 10⁻³ R.L. Be (750 μ m foil)
- 0.21 x 10⁻³ R.L. Be (75 μm foil)

Run conditions

- 3.4 mm collimator , $2 \cdot 10^{-5}$ radiator, 2 nA beam current

➤ Trigger

- run two triggers in parallel: PS and TAC (energy sum)
- PS rate: 10 Hz 750 μm Be
- TAC rate: 200 300 kHz (trigger prescaling factor 129)

- detect tagged ellectrons with $E_{\gamma} > 9.2$ GeV during data runs
- accidental background for PrimEx-D < 4 %