
Proposal for EPICS Interface for
IU HV Control System

Hovanes Egiyan

CAEN HV GUI Example

Suggested Principle

• Continuously scan the bus to maintained a
synchronized buffer layer. Scan speed will depend
on the bandwidth of the system.

• The requests to change hardware could be
delayed, or they could be directly send when
modified by a “user”.

• Parameters values that EPICS records see may be
“old” if requests come within a scan period.

EPICS Support Structure

• Our EPICS support would consist of three pieces:
– Driver - Synchronizing software/hardware

parameters

– Device Support - Connecting values to EPICS PVs

– EPICS application - Variables, GUIs, Alarms etc

• Driver part can be made independent of EPICS framework

• Device Support requests values from the buffer layer and assigns
them to PVs.

• EPICS application is a set of EPICS records, GUIs, Alarm handlers etc,
and can be dealt with together with CAEN HV system.

EPICS IOC SW

Thread Thread Thread

EPICS Driver SW
CAN Thread CAN Thread

Bus Class Bus Class

Our Main Thread
Device

Support

Bus Manager

Methods

Channel Access
Ethernet AnaGateCANDLL

Ethernet

AnaGate Quattro Bus

CallBack CallBack

Bus and Callback Threads

Bus thread periodically requests all IDs on the bus to know which boards are alive.

For each HV parameter on the board:

• Bus thread periodically:
1. Requests the parameter value from the “live” boards on the bus using the

corresponding to that parameter command.
2. Scans through all [bus,board,command] triplet FIFOs for that bus and

command, and synchronizes the buffer layer until responses from all boards
are received and processed. On TIMEOUT generate an error or raise an
alarm.

3. Write to boards if the parameter value on the board needs an (or can skip
this and write every time an EPICS record is processed/modified by “user”).

• Callback thread:
– Keeps reading the messages from the bus and fills up the FIFOs for each

[bus,board,command] triplet.

Questions

• How is the trip current setting control implemented?

• Is there a ramp rate control in the firmware?

• What is the alarm logic for HVs? What is the DAC Voltage to ADC Voltage
correspondence?

• What needs to be done with the LED control?

• How easy is it to add more parameters, like status indication: On, Off, Tripped,
Ramping up etc to the board .

• Can a message from the board FULLY describe what command it is responding to
using “extra bytes”?

• Does the board abandon a planned response if a new request is sent to it?

