Adding recoil proton reconstruction

Justin Stevens PID Upgrade Meeting: 3.8.13

Example: n'(2300)

 $\gamma p \to \eta'_1(2300)p$ $\eta'_1(2300) \to K^*(892)^0 K_s^0$ $K^*(892)^0 \to K^+\pi^ K_s^0 \to \pi^+\pi^-$

- Data samples (data challenge bggen with 8.4<Eg<9 GeV):</p>
 - Signal: Exclusive requirement on final state K+, π -, K_s $\rightarrow \pi$ + π -
 - Background: All bggen not satisfying signal requirement
- All particle combinations are considered with **no cuts** applied before the decision tree

Missing proton reminder

η' Candidate Mass

BDT Cut and ±1.5 Γ cut on K* and η' masses

Improve S/B by a factor of ~10 with BDT!

Analysis	Selection Efficiency	S/B
Cuts-based	0.10	0.24
BDT (compare cuts)	0.10	2.37

Reminder of variables included in the BDT

- Kinematic Fit CL
- Primary vertex χ^2 : Quality of K_s K⁺ π^- from a single point
- Secondary vertex χ^2 : Quality of $\pi^+ \pi^-$ from a single point
- K_s flight distance significance in R and Z (separately)
- K_s impact parameter χ^2 : Change in PV χ^2 when particle removed from PV
- Isolation sums for track momenta, BCAL and FCAL energy
- For each track use:
 - χ^2 from track fit
 - Time of flight CL
 - Track energy loss dE/dx CL

Same list as presented at collaboration meeting, but isolation cone definition changed to use track covariance matrix

• Impact parameter χ^2 : Change in PV χ^2 when particle removed from PV

Recoil proton acceptance

Recoil proton acceptance

- Proton acceptance of ~70% (relative to missing proton analysis)
- No strong dependence for GJ angle

Recoil Proton Input Distributions

Good discrimination from proton PID

Variable ranking: Reco proton η'(2300)

BDTG :		
BDTG :	Rank :Variable	:Variable Importance
BDTG :		
BDTG :	I:SV_flightSignificance	DelZ : 1.534e-01
BDTG :	2:SV_flightSignificance	DelR : 1.273e-01
BDTG :	3 : p4_timeFOM	: 7.268e-02
BDTG :	4 : p5_dEdxFOM	: 5.785e-02
BDTG :	5 : p5_timeFOM	: 5.442e-02
BDTG :	6 : kinFitCL	: 4.787e-02
BDTG :	7 : p1_timeFOM	:4.701e-02
BDTG :	8 : p4_dEdxFOM	: 3.866e-02
BDTG :	9:PV_r	: 3.716e-02
BDTG :	10 : p1_dEdxFOM	: 3.504e-02
BDTG :	II:p3_timeFOM	: 3.219e-02
BDTG :	12 : SV_ChiSq	: 3.106e-02
BDTG :	13 : p2_timeFOM	:2.971e-02
BDTG :	14 : p3_ChiSq	: 2.335e-02
BDTG :	15 : chiSqKplusIP	: 2.137e-02
BDTG :	I6:p3_dEdxFOM	: 2.098e-02
BDTG :	17 : p2_ChiSq	: 1.906e-02
BDTG :	18 : p5_ChiSq	: I.823e-02
BDTG :	19:p2_dEdxFOM	: 1.753e-02
BDTG :	20 : chiSqPiMinusIP	: I.745e-02
BDTG :	21 : isolatedTrackSumP	: 1.725e-02
BDTG :	22 : isolatedBCALSumE	: I.648e-02
BDTG :	23 : PV_ChiSq	: I.572e-02
BDTG :	24 : p4_ChiSq	: I.476e-02
BDTG :	25 : p1_ChiSq	:1.451e-02
BDTG :	26 : chiSqKshortIP	: 1.090e-02
BDTG :	27 : isolatedFCALSumE	: 8.056e-03
BDTG :		

Particle codes: $pI = \pi + (Ks)$ $p2 = \pi - (Ks)$ $p3 = \pi - (K^*)$ $p4 = K + (K^*)$ p5 = proton

Highest ranked variables: Kinematic Fit Secondary vertex displacement PID information χ^2 variables

Reco proton n'(2300)

Reco proton n'(2300)

η' Candidate Mass 70 Signal 60 Background 50 40 30 20 10 1.6 2.2 2.4 2.6 2.8 3 3.2 1.8 2 n' Mass (GeV)

BDT Cut and ±1.5 Γ cut on K* and η' masses

Improve S/B by a factor of ~6 with BDT!

Can still loosen BDT cut to improve efficiency and still maintain high purity

Analysis	Selection Efficiency	S/B
Cuts-based	0.05	5.51
BDT (compare cuts)	0.05	32.5

Example: h'(2600)

- Data samples (data challenge bggen with 8.4<E_γ<9 GeV):
 - Signal: Exclusive requirement on final state K+, K-, π +, π -
 - Background: All bggen not satisfying signal requirement
- All particle combinations are considered with **no cuts** applied before the decision tree

 $\gamma p \to h_2'(2600)p$ $h_2'(2600) \to K_1(1400)^+ K^ K_1(1400)^+ \to K^*(892)^0 \pi^+$ $K^*(892)^0 \to K^+ \pi^-$

Note: No displaced vertex!

Missing proton reminder

BDT Cut and $\pm 1.5 \Gamma$ cut on K₁, K^{*} and h' masses

Improve S/B by factor of \sim 3

Additional PID info needed to analyze this decay channel?

Analysis	Selection Efficiency	S/B
Cuts-based	0.04	0.06
BDT (compare cuts)	0.04	0.18

Recoil Proton Input Distributions

Good discrimination from proton PID

Variable ranking Reco proton h`(2600)

*-----

ince	Particle codes:
	$pl = \pi +$
	$p_{2} = \pi_{-}$
	$p^{2} = K^{+}$
	$p_{4} = K_{-}$
	p = roton
	Highest ranked variables:
	Kinematic Fit

PID information

 χ^2 variables

BDTG	: Rank : Variable	:Variable Importa
BDTG	:	
BDTG	: I : p3_timeFOM	: 9.033e-02
BDTG	: 2 : p5_dEdxFOM	: 7.450e-02
BDTG	: 3 : kinFitCL	:7.118e-02
BDTG	: 4 : p5_timeFOM	: 5.606e-02
BDTG	: 5 : p4_timeFOM	: 5.493e-02
BDTG	: 6:PV_r	: 5.487e-02
BDTG	: 7:PV_ChiSq	: 4.957e-02
BDTG	: 8:pl_dEdxFOM	: 4.543e-02
BDTG	: 9:p4 dEdxFOM	: 4.506e-02
BDTG	: I0:p3_dEdxFOM	: 4.450e-02
BDTG	: II : pl_timeFOM	: 4.148e-02
BDTG	: 12 : chiSqPiPlusIP	: 4.032e-02
BDTG	: 13 : chiSqPiMinusl	P: 3.651e-02
BDTG	: 14:pl ChiSq	: 3.468e-02
BDTG	: 15 : p2 ChiSq	: 3.100e-02
BDTG	: 16 : p4_ChiSq	:2.941e-02
BDTG	: 17 : p5_ChiSq	: 2.890e-02
BDTG	: 18 : p2 timeFOM	: 2.600e-02
BDTG	: 19 : isolatedTrackS	SumP : 2.549e-02
BDTG	: 20 : p2 dEdxFOM	: 2.430e-02
BDTG	: 21 : chiSgKminusII	P : 2.287e-02
BDTG	: 22 : p3 ChiSq	:2.183e-02
BDTG	: 23 : isolatedBCAL	SumE : 2.013e-02
BDTG	: 24 : chiSqKplusIP	:1.861e-02
BDTG	: 25 : isolatedFCAL	SumE : 1.203e-02
BDTG	:	

--- BDTG

Reco proton h'(2600)

Reco Proton Results

BDT Cut and ±1.5 Γ cut on K₁, K* and h' masses

Improve S/B by factor of ~3 with BDT

Possibly accessible without additional PID! But is the efficiency too low?

Analysis	Selection Efficiency	S/B
Cuts-based	0.02	8.6
BDT (compare cuts)	0.02	26.8

Some rough "topology" yield estimates

	missing proton	reco proton
η'(2300)	~0.88 M	~0.36 M
h'(2600)	~I.75 M	~0.82 M

- Integrate signal yields in the expected hybrid mass ranges from the previous slides (for reco proton with BDT have S/B ~ 30)
- Scale signal yields from this small sample to 220 PAC days with 70% uptime at 10⁸ photons/s

Summary

- Significant reduction in background when using reconstructed recoil proton
 - Lower efficiency but possibly viable without additional PID
 - Analyzing larger statistics to better quantify
- Next steps:
 - Add Cherenkov detector performance (John's study) to BDT
 - Other channels?

Backup

Variables included in the BDT

- Kinematic Fit CL
- Primary vertex χ^2 : Quality of K_s K⁺ π^- from a single point
- Secondary vertex χ^2 : Quality of $\pi^+ \pi^-$ from a single point
- K_s flight distance significance in R and Z (separately)
- K_s impact parameter χ^2 : Change in PV χ^2 when particle removed from PV
- Isolation sums for track momenta, BCAL and FCAL energy (next slide)
- For each track use:
 - χ^2 from track fit
 - Time of flight CL
 - Track energy loss dE/dx CL

Notes:

- •No Cherenkov detectors added at this point
- •No problem with adding too many variables, less useful variables simply don't branch the decision tree
- Impact parameter χ^2 : Change in PV χ^2 when particle removed from PV

Isolation Variables

- Motivation: identify backgrounds with extra charged track or neutral outside of the desired topology
- Use covariance matrices for reconstructed tracks to identify a "cone" around each track which we exclude ECAL showers within

Input distributions

Missing proton n'(2300)

Angular Acceptance

- In this case the "flatness" of the acceptance vs GJ angle is comparable to that of the cuts based, but may not be true for all BDT selection
- We've developed a procedure to include a "smooth" out the acceptance in the boosting procedure to maintain uniform acceptance

Proton angle

Missing proton θ for non-topology η' candidates which passed the BDT cut

Reconstructed proton θ for all true topology η ' events

θ°

