Probing QCD in the nuclear medium with real photons and nuclear targets @ GlueX

forward calorimeter

barre

calorimeter

target

time-of -flight

PR12-17-007 (GlueX collaboration proposal)

Spokespersons:

H. Gao (Duke), M. Patsyuk (MIT), D. Dutta (MSS), L.B. Weinstein (ODU), A. Somov (JLab), E. Piasetzky (TAU)

Theory Support: S. Brodsky, L. Frankfurt, A.B. Larionov, G.A. Miller, M. Sargsian, M. Strikman photon beam diamond forward drift wafer chambers drift electron super tagger magnet beam electron beam on National Accelerator Facility

Balanced 3 Course Meal To Start The Day

(1) Photon Structure in QCD

In production processes

Soft-hard transition gives insight about the onset of QCD applicability for exclusive processes and origin of scaling behavior (constituent counting rules) $\frac{d\sigma}{d\Omega} = \frac{1}{c\sum n = 2} f(\cos \Theta_{c.m.})$

Probing Photon Structure

Measurements of exclusive photoproduciton off nuclei requires:

(A) Photon penetrates the nucleus(B) Hadrons escape the nucleus

Reaction cross-section will have different value and A-dependence for Vector-Meson vs. point like photon!

Details of soft-hard transition

$ \begin{array}{ll} \gamma + p \rightarrow \pi^{0} + p & \gamma + n \rightarrow \pi^{-} + p \\ \gamma + p \rightarrow \pi^{-} + \Delta^{++} & \gamma + n \rightarrow \pi^{-} + \Delta^{++} \\ \gamma + p \rightarrow \rho^{0} + p & \gamma + n \rightarrow \rho^{-} + p \\ \gamma + p \rightarrow \kappa^{+} + \Lambda^{0} & \gamma + n \rightarrow \kappa^{0} + \Lambda^{0} \\ \gamma + p \rightarrow \kappa^{+} + \Sigma^{0} & \gamma + n \rightarrow \kappa^{0} + \Sigma^{0} \\ \gamma + p \rightarrow \omega + p & x \\ \gamma + p \rightarrow \phi + p & x \\ \dots & \dots \end{array} $ $ \begin{array}{l} Targets: \\ H, D, {}^{4}He, {}^{12}C, {}^{40}Ca \end{array} $	Exclusive Proton Reactions	Exclusive Neutron Reactions					
$ \begin{array}{ll} \gamma + p \rightarrow \pi^{-} + \Delta^{++} & \gamma + n \rightarrow \pi^{-} + \Delta^{++} \\ \gamma + p \rightarrow \rho^{0} + p & \gamma + n \rightarrow \rho^{-} + p \\ \gamma + p \rightarrow K^{+} + \Lambda^{0} & \gamma + n \rightarrow K^{0} + \Lambda^{0} \\ \gamma + p \rightarrow K^{+} + \Sigma^{0} & \gamma + n \rightarrow K^{0} + \Sigma^{0} \\ \gamma + p \rightarrow \omega + p & x \\ \gamma + p \rightarrow \phi + p & x \\ \dots & \dots \end{array} $ $ \begin{array}{ll} Targets: \\ H, D, {}^{4}He, {}^{12}C, {}^{40}Ca \end{array} $	$\gamma + p \rightarrow \pi^0 + p$	$\gamma + n \rightarrow \pi^- + p$					
$ \begin{array}{l} \gamma + p \rightarrow \rho^{0} + p & \gamma + n \rightarrow \rho^{-} + p \\ \gamma + p \rightarrow K^{+} + \Lambda^{0} & \gamma + n \rightarrow K^{0} + \Lambda^{0} \\ \gamma + p \rightarrow K^{+} + \Sigma^{0} & \gamma + n \rightarrow K^{0} + \Sigma^{0} \\ \gamma + p \rightarrow \omega + p & x \\ \gamma + p \rightarrow \phi + p & x \\ \dots & \dots \end{array} $ $ \begin{array}{l} Targets: \\ H, D, ^{4}He, ^{12}C, ^{40}Ca \end{array}$	$\gamma + p \rightarrow \pi^- + \Delta^{++}$	$\gamma + n \rightarrow \pi^- + \Delta^{++}$					
$\gamma + p \rightarrow K^{+} + \Lambda^{0} \qquad \gamma + n \rightarrow K^{0} + \Lambda^{0}$ $\gamma + p \rightarrow K^{+} + \Sigma^{0} \qquad \gamma + n \rightarrow K^{0} + \Sigma^{0}$ $\gamma + p \rightarrow \omega + p \qquad x$ $\gamma + p \rightarrow \phi + p \qquad x$ Targets: H, D, ⁴ He, ¹² C, ⁴⁰ Ca	$\gamma + p \rightarrow \rho^0 + p$	$\gamma + n \rightarrow \rho^{-} + p$					
$\gamma + p \rightarrow K^{+} + \Sigma^{0} \qquad \gamma + n \rightarrow K^{0} + \Sigma^{0}$ $\gamma + p \rightarrow \omega + p \qquad x$ $\gamma + p \rightarrow \varphi + p \qquad x$ Targets: H, D, ⁴ He, ¹² C, ⁴⁰ Ca	$\gamma + p \rightarrow K^+ + \Lambda^0$	$\gamma + n \rightarrow K^0 + \Lambda^0$					
$\gamma + p \rightarrow \omega + p \qquad x \gamma + p \rightarrow \phi + p \qquad x \dots \qquad \dots$ Targets: H, D, ⁴ He, ¹² C, ⁴⁰ Ca	$\gamma + p \rightarrow K^+ + \Sigma^0$	$\gamma + n \rightarrow K^0 + \Sigma^0$					
$\gamma + p \rightarrow \phi + p \qquad x$ Targets: H, D, ⁴ He, ¹² C, ⁴⁰ Ca	$\gamma + p \rightarrow \omega + p$	x					
 <u>Targets:</u> H, D, ⁴ He, ¹² C, ⁴⁰ Ca diamond	γ+p→φ+p	x					
<u>Targets:</u> H, D, ⁴ He, ¹² C, ⁴⁰ Ca diamond							
H, D, ⁴ He, ¹² C, ⁴⁰ Ca	Targets:						
diamond	H, D, ⁴He, ¹² C, ⁴⁰ Ca						
wafer		diamond wafer					

Simultaneous measurement of a wide range of final states allows probing the **quark composition** (π vs. η) and **spin** dependence (π vs. ρ) of the soft-hard transition

Mapping of soft-hard transition: A, [t], [u] expected sensitivity $\gamma + n \rightarrow p + \pi$ 0.7 ⁴He 'He 0.6 0.6 Photon = point particle Photon = point particle Absolute transparency and 0.5 0.5 ratios for A= 4, 12, and 40 Photon = vector meson Photon = vector meson 0.4 0.4 over a wide range of **[t]** and 0.3 0.3 **Expected behavior** $|\mathbf{u}| \rightarrow$ detailed map of the 0.2 0.2 5 10 15 30 120 150 60 soft-hard transition! 0.7 0.7 12C 12C 0.6 0.6 $T = \sigma_{YA} / A \sigma_{YN}$ 0.5 0.5 Photon = point particle Photon = point particle 0.4 0.4 Photon = vector meson Photon = vector meson 0.3 0.3 0.2 0.2 $\Theta_{\rm c.m.} = 90 \, \rm deg.$ 0.1 0.1 1.0 $\Theta_{\rm c.m.} = 45 \, \rm deg.$ 0.0 0.0 T relative to ⁴He 5 10 15 90 120 150 30 60 θ c.m. [deg] |t| [GeV²] 0.8 Photon = point-particle 0.5 0.5 ⁴⁰Ca ⁴⁰Ca 0.6 0.4 0.4 Photon = point particle Photon = point particle 0.3 0.3 0.4 Photon = vector-meson $\gamma + n \rightarrow p + \pi$ expected sensitivity 0.2 0.2 Photon = vector meson Photon = vector meson 10 20 30 40 0.1 0.1 А 0.0 0.0 5 10 15 30 60 90 120 150

Larionov and Strikman, PLB (2016)

6

(2) Color Transparency

- At high |t| photon couples to small transverse sized configuration of a nucleon
- Fundamental QCD prediction: small sized configurations interact less with hadronic matter

"squeezing" – defined by |t|, |u|

"freezing" – defined by energy transfer

GlueX – unique machine to study CT:

high energy transfers even for moderate momentum transfers |t|!

Probing Color Transparency

Current status of CT

GlueX advantages

Previous measurements: |t| < 3.5 GeV²

- Extends |t_{max}| from 3.5 GeV² to >10 GeV²!
- . Higher photon energy (enhanced "freezing")
- . Many baryon-meson final states
- 4. Wide c.m. angle coverage

(3) Short-Range Correlations (SRC)

Nucleon pairs with high relative momentum and low c.m. momentum compared to $k_{\rm F}$

Studied primarily with A(e,e'pN) and A(p,2pn) reactions

Subedi et al., Science (2008)

Hen et al., Science (2014)

Why photons ?

Interaction is more likely with high momentum forward going nucleon (SRC)

Probe independence on reaction mechanism:

- e and p data show good consistency
- e vs. γ different reaction mechanisms and kinematics
- Isospin structure: np/pp ratio
- Momentum transfer |t| dependence

Kinematical distributions

 $\gamma + n \rightarrow \pi^- + p$ (smallest expected rate)

Mean Field (MF): P_{miss} < 0.25 GeV/c SRC: $P_{miss} > 0.3 \text{ GeV/c}, \theta_{recoil} < 160^{\circ}$

Reconstruction of final state particles in GlueX software

$$\gamma + n \rightarrow \pi^- + p$$

Detection efficiency:

80% \rightarrow each of leading particles

 $65\% \rightarrow$ recoil proton (SRC)

 $30\% \rightarrow$ reconstruction of ρ^0

Detection efficiency for the recoil (SRC)

Beam conditions

Can not use the whole photon spectrum because of tagger occupancy

$$rac{d\sigma}{dt} \propto s^{-7}$$
 ,

need large |t| values

Coherent peak [8.4, 9.1] GeV and **5 mm collimator**

Rate optimization for a set of targets

Prioritized list of factors limiting the event rates:

- 1. GlueX detector capabilities: limited flux on target of 2 x 10⁷ photons/s in the coherent peak
- 2. Target thickness \rightarrow electromagnetic background ~ X₀
- 3. Neutron background $\propto
 ho_{target} \cdot A$
- 4. Coincidental rate in the tagger (up to 24% for this flux)

Target	Thickness [cm] / $\% X_0$	Atoms/cm ² for the given target thickness	EM bkg. rel. to GlueX	Neutron bkg. rel. to GlueX
D	30 / 4.1	1.51×10^{24}	0.5	1.3
⁴ He	30 / 4	5.68×10^{23}	0.5	1
¹² C	1.9 / 7	1.45×10^{23}	1	0.8
^{40}Ca	0.73 / 7	1.70×10^{22}	1	0.3
LH	30 / 3.4	1.28×10^{24}	1	1*

* For nominal flux in the coherent peak of 10⁸ photons/s

Proposed Measurement

Target	$\gamma + n \to \pi^- p$		$\gamma + n \rightarrow \rho^- p$		PAC	
rarget	MF	SRC	MF	SRC	Days	
D	13,600	750	57,000	3,000	5	
$^{4}\mathrm{He}$	13,000	670	54,500	2,800	8	
$^{12}\mathrm{C}$	7,400	2,300	31,000	9,500	10	
⁴⁰ Ca	2,600	840	10,900	3,500	14	
Calibration, commissioning, and overhead:						
Total PAC Days:						

Event rates for reactions with the smallest and largest cross sections

Summary

- A new photonuclear program for Hall-D
- Standard GlueX conditions and no changes to the GlueX spectrometer and Hall-D beam line

- Physics focus:
 - 1. <u>Photon Structure</u>
 - 2. Color Transparency and SRC

 Many more ideas being suggested by theoreticians... (e.g. M. Sargsian contribution to arXiv:1704.00816)

Axion-like particles photoproduced at Gue

Daniel Aloni, Cristiano Fanelli, Yotam Soreq, and Mike Williams

- Study of ALP with QCD-scale masses whose dominant coupling to SM is to photons or gluons
- Introduced data-driven method (no knowledge of nuclear form factors or photon-beam flux) when considering coherent Primakoff off of a nuclear target
- PrimEx data (2004) can improve sensitivity by an order of magnitude
- Estimated potential sensitivity of GlueX with a nuclear target (and using CompCal calorimeter)
- The case where the dominant coupling is to gluons has been studied for the first time in photoproduction and future GlueX sensitivity is predicted.

Production Mechanism

Primakoff production via t-channel photon exchange

Photon-vector meson mixing and t-channel vector meson exchange

γγ is the main decay mode at low mass

Limits

Limits

world-leading limits based on public plots

- Explored sensitivity of photon-beam experiments to ALPs
- Two scenarios (dominant coupling to photons or gluons) presented but can be generalized to any other set of ALP couplings.
- Set world-leading limits determined with public data
- Explored potential sensitivity of GlueX with a nuclear target