UPV Design & Reconstruction Issues

Physics demands
 Design issues
 Sasha

- Simulations & Reconstruction Issues

Paul Eugenio & Alexander Ostrovidov Florida State University

July 26, 2007

Soft Photon Energy Spectrum

UPV Design

Lead/Scintillator Sampling Calorimeter

Alternating lead/scintillator layers

- 18 layers of 1cm thick scintillator
- 12 layers of 0.185 cm thick lead sheets (0.36X₀ each) followed by 6 layers 0.370 cm thick (0.72X₀ each)

material thickness: 22.4 cm or 8.91X₀

~24% sampling fraction

July 26, 2007

GEANT Detection Efficiency

Events were accepted if the visible energy exceeded a threshold of 2.0 MeV

See GlueX-doc-674 for design optimization studies **GlueX PID Workshop**

UPV Segmentation

56 x,y by 2 z segments (112 x 2 = 224 channels)

Х

Total UPV volume: 240cm x 240cm x 26cm

x, y segmentation

- each scint. plane is composed of 56 4.25cm x 238cm scint. strips
- alternating layers of scint. are rotated forming a x-y stereo readout

z segmentation

• inner and outer segmentation in z

beam hole

central region has a 25.5cm x 25.5cm void

July 26, 2007

Readout Options

option 1

WLS Fibers

Advantages

- good attenuation
- use fibers to bring light out
- use of extruded scint.
 - w/ groove & reflective wrap
- lower cost option
- fiber detour by beam hole
 Disadvantages
 - much less light
 - increase complexity
 - grooving of cast scint.
 - aging fiber optical glue

option 2

WLS Bar

Advantages

- more light
 - reach lower threshold
- simplicity of design
- long term stability

Disadvantages

- greater cost
 - need more PMTs
- increase channels
 - split beam hole coverage
- S.E.R.O. end effects

July 26, 2007

Wavelength Shifting Fibers

2-2mm fiber/scint.

9 scint. per x,y stack
5 scint. inner depth (10 fibers)
4 scint. outer depth (8 fibers)

SensL 12mm SiPM array

- 1 SensL array per readout channel
- 224 SensL arrays

cost: 90 k\$

Planacon (8 x 8) array

- 64 6mm x 6mm cells
- 224 channels = 4 tubes

cost: ~16 k\$

July 26, 2007

Wavelength Shifting Bar

SensL 12mm SiPM array

- full coverage (100%)
 - 3 SensL array/channel
- Winston cone reduction
 - 68% area, 2 SensL arrays/chan.
 - 33% area, 1 SensL array/chan.

cost: 275 – 185 - 95 k\$

<u>Planacon (2 x 2) 25mm array</u>

- full coverage (100%)
- 224+12 channels = 59 tubes

<u>Planacon (4 x 4) 12.5mm array</u>

- Winston cone reduction
- 68% area, 2 cells/chan. = 29 tubes
- 33% area*2 sides, 1 cell/chan = 29 tubes

cost: 70 - 125 k\$

July 26, 2007

R&D on WLS Fiber Readout GlueX-doc-846

Light-tight test box: lower left image show the PMT/fiber interface, lower right image shows the controlling system for the radioactive source with mounted scintillator.

The fibers were milled flat using a specially designed fiber clamp.

July 26, 2007

Uniformity & Yield Scans

Rate (Hz) as a function of position (inches) across the scintillator surface: comparing air-gap, optical cement, and scintillator resin optical-coupling methods. The optical cement overall out performs the other methods except for the large variation in the groove region.

July 26, 2007

Extruded & Cast Scintillators

Rate (Hz) as a function of position (inches) across the scintillator surface: Extruded polystyrene-based scintillator from the Fermilab-NICADD extrusion line. The measurements are for a fiber air-gap coupling and an optical cement coupling.

Rate (Hz) as a function of position (inches) across the scintillator surface: measurements with and without Tyvek wrapping on scintillator.

July 26, 2007

Scintillator coupled directly to PMT

July 26, 2007

Scintillator coupled directly to PMT

July 26, 2007

Sasha's slides

July 26, 2007

UPV reconstruction issues

O Code for 2 different UPV layouts:

- Old Design I: 1D layout with readout on both ends
- New Design II: 2D layout with readout on one end

Single-photon Monte Carlo results:

- Average sampling factor
- Energy resolution
- Longitudinal positional resolution
 - Time-based Amplitude-based
- Transverse positional resolution

O Current UPV reconstruction projects:

- Ambiguities in multi-photon events
- Confidence level

July 26, 2007

EM shower depth and width

July 26, 2007

Average sampling factor

$$\frac{E_{seen}}{E_{\gamma}} \sim a + \frac{b}{E_{\gamma}}$$

July 26, 2007

$$\frac{E_{seen}}{E_{\gamma}} \sim c + d \cdot R$$

Energy resolution

July 26, 2007

Longitudinal resolution (Design I)

Using timing:

Longitudinal resolution (Design I)

Using amplitude:

 $X_{rec} = 0.5\lambda_{atten} * (\log E_1 - \log E_2)$

Transverse resolution

GIUEN FID WUIKSHUP

Multiple-hit ambiguities Design I Design I

A and B: unambiguous A and C: ? shape of ADC signal ?

- A and B: ambiguous with C and D
- Sorting by energy doesn't work
- Sorting by time doesn't work
- ? optimal confidence level ?
- ? improved Design III ?

July 26, 2007

Multiple-hit ambiguities Design I Design II

July 26, 2007

Confidence level

Probability of a hit to be an electromagnetic shower

Components of the error matrix:

- Number of rows (width) as a function of energy

$$- \sigma (E_x - E_y)$$

-
$$\sigma (E_{inner} - E_{outer})$$

-probably, $\sigma (t_1 - t_2)$ or $\sigma (t_1 + t_2)$

backup slides

July 26, 2007

GEANT Resolution

July 26, 2007

Beamline Related Backgrounds

Geant simulation of beamline and shielding including photo-hadronic interactions and muon pair production.

Conclusion: negligible background

~25 kHz whole region

July 26, 2007