$\eta \to 2\gamma \pi^0 \; {\rm status}$

Igal Jaeglé

Thomas Jefferson National Accelerator Facility

for the GlueX Collaboration

17.12.2021

Table of contents

- 2 PrimEx-eta "veto"
- 3 PrimEx-eta "veto" impact for $\eta \rightarrow 2\gamma \pi^0$
- Improved MVA

Introduction

PrimEx-eta "veto" implemented in ijaegle-veto branch (halld_recon & gluex_root_analysis) and is currently reviewed by Sean, Simon, and Matt.

- Flag neutral showers which are not matched with a reconstructed tracks but match hits in SC and TOF
- Matching TOF & SC hits saved for $|\Delta x|/|\Delta y| < 10$ cm and $\Delta \phi < 25^{o}$, respectively

Increase signal sample by 50

Select SC hits in coincidence with RF and an energy deposided above 0.2 in a.u.

- SC_RF_CUT_MIN = 1.0 ns
- SC_RF_CUT_MAX = 7.0 ns
- SC_Energy_CUT = 0.2 a.u.

Then compare azimuthal angles between SC hits and BCAL/FCAL showers

- SC_FCAL_PHI_CUT = 25°
- SC_BCAL_PHI_CUT = 15°
- SC vs. BCAL (PrimEx-eta data set field off)

SC vs. FCAL (PrimEx-eta data set field off)

Then compare azimuthal angles between SC hits and BCAL/FCAL showers

- SC_FCAL_PHI_CUT = 25°
- SC_BCAL_PHI_CUT = 15°
- SC vs. BCAL (PrimEx-eta data set field on)

SC vs. FCAL (PrimEx-eta data set field on)

Then compare azimuthal angles between SC hits and BCAL/FCAL showers for shower match

- SC_FCAL_PHI_CUT = 25°
- SC_BCAL_PHI_CUT = 15°
- SC vs. BCAL (PrimEx-eta data set field on)

SC vs. FCAL (PrimEx-eta data set field on)

TOF veto

Select TOF hits in coincidence with RF

• TOF_RF_CUT = 6.5 ns

TOF veto

Then compare cartesian coordinates (x/y) between TOF hits and FCAL showers

- TOF_FCAL_x_match_CUT = 10 cm
- TOF_FCAL_y_match_CUT = 10 cm
- Δx (PrimEx-eta data set field off)

Δy (PrimEx-eta data set field off)

TOF veto

Then compare cartesian coordinates (x/y) between TOF hits and FCAL showers

- TOF_FCAL_x_match_CUT = 10 cm
- TOF_FCAL_y_match_CUT = 10 cm
- Δx (PrimEx-eta data set field on)

Δy (PrimEx-eta data set field on)

Usefulness

Critical for GlueX/JEF (rare η decay) and PrimEx-eta if we want to use ReactionFilter/DSelector and also look at off neutron processes Example: $\gamma p \rightarrow \eta p$ and $\eta \rightarrow 2\gamma \pi^0$

Veto not applied (GlueX 2017-01 simulation)

Veto applied (GlueX 2017-01 simulation)

Usefulness

Critical for GlueX/JEF (rare η decay) and PrimEx-eta if we want to use ReactionFilter/DSelector and also look at off neutron processes Example: $\gamma p \to \eta p$ and $\eta \to 2\gamma \pi^0$

Veto not applied (JEF simulation)

Veto applied (JEF simulation)

Yield vs. cluster mass cut

Without and with TOF-veto applied

Veto applied (JEF simulation)

TOF-veto decreases the yield by a factor 4

FOM vs. cluster mass cut

Without and with TOF-veto applied, and without (point) and with BDT (open point) applied

Veto not applied (JEF simulation)

Veto applied (JEF simulation)

FOM not adequate

Signal over background vs. cluster mass cut

Without and with TOF-veto applied, and without (point) and with BDT (open point) applied

Veto applied (JEF simulation)

MVA might not be needed!

Improved MVA

Un-anticipated improvement of the MVA by increasing the signal sample by 50

Veto not applied (GlueX 2017-01 simulation)

Veto not applied (JEF simulation)

Improved MVA

Un-anticipated improvement of the MVA by increasing the signal sample by 50

Veto applied (GlueX 2017-01 simulation)

Veto applied (JEF simulation)

Conclusion

For first time some real improvements are seen for FCAL2 compared to FCAL1 \dots Not clear yet if veto-detector is needed for insert part not covered by TOF