## 1 Theory appendix

The scattering amplitude for $\gamma \gamma^{*} \rightarrow \pi^{0} \pi^{0}$ is given in terms of the Compton tensor, whose low energy expansion in the Compton scattering channel $\gamma \pi^{0} \rightarrow \gamma \pi^{0}$ is given in terms of the electric and magnetic polarizabilities of the $\pi^{0}$. For the case of interest with one real photon, the Compton tensor is given in by two amplitudes, namely:

$$
\begin{align*}
T_{\mu \nu} & =-\left(A(s, t, u)+\frac{1}{4} B(s, t, u)\right)\left(\frac{1}{2} s g_{\mu \nu}-k_{\nu} q_{\mu}\right)  \tag{1}\\
& +\frac{1}{4 s} B(s, t, u)\left(\left(s-q^{2}\right) p_{-\mu} p_{-\nu}-2\left(k \cdot p_{-} q_{\mu} p_{-\nu}+q \cdot p_{-} k_{\nu} p_{-\mu}-g_{\mu \nu} k \cdot p_{-} q \cdot p_{-}\right)(2)\right. \tag{2}
\end{align*}
$$

Here $s=W_{\pi \pi}^{2}$ is the invariant mass squared of the two $\pi^{0} \mathrm{~s}, k$ the momentum of the beam photon, $q$ the momentum of the virtual photon, and $p_{-}$the $p_{-}=p_{1}-p_{2}$ the momentum difference between the two pions.

The limit of interest for the polarizabilities is:

$$
\begin{align*}
\alpha_{\pi} & =-\left.\frac{\alpha}{2 M_{\pi}}\left(A(s, t, u)-\frac{2}{s} M_{\pi}^{2} B(s, t, u)\right)\right|_{s=0, t=u=M_{\pi}^{2}} \\
\beta_{\pi} & =\left.\frac{\alpha}{2 M_{\pi}} A\right|_{s=0, t=u=M_{\pi}^{2}} \tag{3}
\end{align*}
$$

where $\alpha_{\pi} \beta_{\pi}$ are the electric and magnetic polarizabilities respectively.
The low energy limit is analyzed in ChPT. At the lowest significant order, i.e., one loop, the $\pi^{0}$ polarizabilities are entirely given in terms of known quantities, namely:

$$
\begin{equation*}
\alpha_{\pi_{0}}=-\beta_{\pi_{0}}=-\frac{\alpha}{96 \pi^{2} M_{\pi} F_{\pi}^{2}} \simeq-0.55 \times 10^{-4} \mathrm{fm}^{3} \tag{4}
\end{equation*}
$$

The positive magnetic susceptibility indicates that the $\pi_{0}$ is diamagnetic, and naturally the negative electric polarizability tells that it behaves as a dielectric.

There are higher order corrections in the chiral expansion to the above prediction corresponding to a two-loop calculation, which is undefined up to two low energy constants $h_{ \pm}$ in the notation of Ref. [?], expected to be significant for the corrections.

The amplitudes $A$ and $B$ are constrained by unitarity and analiticity to satisfy dispersion relations. In particular below $s \sim 0.8 \mathrm{GeV}^{2}$ the dominant contributions are for the pair of pions in an S-wave. The rather well established S-wave phase shifts thus allow for implementing dispersion relations [?]. In this proposal the model by Donoghue and Holstein [?] for implementing the dispersive representation using S-wave final state interaction was adopted. The model implements twice subtracted dispersion relations for the isospin 0 and 2 components of the amplitude A with the addition of $t$ - and $u$-channel resonance exchanges for both A and B. The four subtraction constants require the experimental input of the cross section to be measured by the proposed experiment.

A summary of useful theory results is the following:

1) representation of the Compton amplitudes:

$$
\begin{align*}
s A(s, t, u) & =-\frac{2}{3}\left(f_{0}(s)-f_{2}(s)\right)+\frac{2}{3}\left(p_{0}(s)-p_{2}(s)\right)-\frac{s}{2} \sum_{V=\rho, \omega} R_{V}\left(\frac{t+M_{\pi}^{2}}{t-M_{V}^{2}}+\frac{u+M_{\pi}^{2}}{u-M_{V}^{2}}\right) \\
B(s, t, u) & =-\frac{1}{8} \sum_{V=\rho, \omega} R_{V}\left(\frac{1}{t-M_{V}^{2}}+\frac{1}{u-M_{V}^{2}}\right) \\
R_{V} & =\frac{6 M_{V}^{2}}{\alpha} \frac{\Gamma(V \rightarrow \pi \gamma)}{\left(M_{V}^{2}-M_{\pi}^{2}\right)^{3}} \tag{5}
\end{align*}
$$

where $V=\rho, \omega$,

$$
\begin{align*}
p_{I}(s) & =f_{I}^{\mathrm{Born}}(s)+p_{I}^{A}(s)+p_{I}^{\rho}(s)+p_{I}^{\omega}(s) \\
p_{0}^{A}(s)=p_{2}^{A}(s) & =\frac{L_{9}^{r}+L_{10}^{r}}{F_{\pi}^{2}}\left(s+\frac{M_{A}^{2}-M_{\pi}^{2}}{\beta(s)} \log \frac{1+\beta(s)+s_{A} / s}{1-\beta(s)+s_{A} / s}\right) \\
p_{0}^{\rho}(s) & =\frac{3}{2} R_{\rho}\left(\frac{M_{\rho}^{2}}{\beta(s)} \log \frac{1+\beta(s)+s_{\rho} / s}{1-\beta(s)+s_{\rho} / s}\right) \\
p_{2}^{\rho}(s) & =0 \\
p_{0}^{\omega}(s)=-\frac{1}{2} p_{0}^{\omega}(s) & =-\frac{1}{2} R_{\omega}\left(\frac{M_{\omega}^{2}}{\beta(s)} \log \frac{1+\beta(s)+s_{\omega} / s}{1-\beta(s)+s_{\omega} / s}-s\right), \tag{6}
\end{align*}
$$

where $\beta(s)=\sqrt{\frac{s-4 M_{\pi}^{2}}{s}}, M_{A}$ the mass of the $A_{1}$ resonance. The $f_{I}$ S are given by the dispersive representation:

$$
\begin{equation*}
f_{I}(s)=p_{I}(s)+\Omega_{I}(s)\left(c_{I}+d_{I} s-\frac{s^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} p_{I}\left(s^{\prime}\right) \operatorname{Im}\left(\Omega_{I}^{-1}\left(s^{\prime}\right)\right) \frac{d s^{\prime}}{\left(s^{\prime}-s\right) s^{\prime 2}}\right) \tag{7}
\end{equation*}
$$

with the Omnès function:

$$
\begin{equation*}
\Omega_{I}\left(s>4 M_{\pi}^{2}\right)=e^{i \phi_{I}(s)} \exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\phi_{I}\left(s^{\prime}\right)-\phi_{I}(s)}{s^{\prime}-s} \frac{d s^{\prime}}{s^{\prime}}+\frac{\phi_{I}(s)}{\pi} \log \frac{4 M_{\pi}^{2}}{s-4 M_{\pi}^{2}}\right) \tag{8}
\end{equation*}
$$

the phases $\phi_{I}$ are related to the corresponding $\pi \pi$ S-wave phase shifts according to:

$$
\begin{align*}
& \phi_{0}(s)=\theta(M-\sqrt{s}) \delta_{0}^{0}(s)+\theta(\sqrt{s}-M)\left(\pi-\delta_{0}^{0}(s)\right) \\
& \phi_{2}(s)=\delta_{0}^{2}(s) \tag{9}
\end{align*}
$$

where $M$ is the mass of the $f_{0}$ resonance.
The values used for the parameters entering the representations above are:

$$
\begin{align*}
L_{9}^{r}+L_{10}^{r} & =1.43 \pm 0.27 \times 10^{-3} \\
s_{i} & =2\left(M_{i}^{2}-M_{\pi}^{2}\right) \\
R_{\omega} & =1.35 / \mathrm{GeV}^{2} ; \quad R_{\rho}=0.12 / \mathrm{GeV}^{2} \tag{10}
\end{align*}
$$

and the $\pi \pi$ phase shifts are well approximated up to $\sqrt{s} \sim 1.5 \mathrm{GeV}$ by the parametrization:

$$
\begin{equation*}
\delta_{0}^{I}(s)=\arcsin \left(\frac{\Gamma_{I}}{2 \sqrt{\left(\sqrt{s}-M_{I}\right)^{2}+\frac{\Gamma_{I}^{2}}{4}}}\right)+\sum_{n=0}^{N} a_{n}(\sqrt{s})^{n} \tag{11}
\end{equation*}
$$

where we include one single resonance for each $I=0,2$.
For the available data we need only up to $N=3$ for $I=0$, with the result:

$$
\begin{align*}
M_{0}=0.994 G e V ; & \Gamma_{0}=0.0624 G e V \\
a_{0}=-1.439 ; & a_{1}=6.461 / \mathrm{GeV} ; \quad a_{2}=-5.529 / \mathrm{GeV}^{2} ; \quad a_{3}=2.022 / \mathrm{GeV}^{3} \tag{12}
\end{align*}
$$

For the case $I=2$ one finds that the resonance term is not needed at all and a good fit is provided with $N=3$ with the result:

$$
a_{0}=-0.878 ; a_{1}=-0.611 / G e V ; \quad a_{2}=-0.083 / G e V^{2} ; \quad a_{3}=0.115 / G e V^{3}(13)
$$

The $\gamma \gamma \rightarrow \pi_{0} \pi_{0}$ in the $S$-wave approximation valid up to about $\sqrt{s} \sim 0.9 \mathrm{GeV}$ is given by:

$$
\begin{align*}
\sigma_{\gamma \gamma \rightarrow \pi^{0} \pi^{0}}(|\cos \theta|<Z)(s) & =\frac{\pi \alpha_{E M}^{2}}{s^{2}} \frac{Z}{2} \sqrt{s\left(s-4 M_{\pi}^{2}\right)}  \tag{14}\\
& \times\left(\left|A(s) s-M_{\pi}^{2} B(s)\right|^{2}\right. \\
& \left.+\frac{1}{s^{2}}\left(M_{\pi}^{4}-\frac{1}{16}\left(\frac{Z^{2}}{3} s\left(4 M_{\pi}^{2}-s\right)+4\left(s-2 M_{\pi}^{2}\right)^{2}\right)\right)|B(s)|^{2}\right)
\end{align*}
$$

Fitting to the Cristal Ball data the parameters $c_{0}, d_{0}, c_{2}, d_{2}$ can be estimated, giving in the corresponding units:

$$
\begin{align*}
c_{0} & =-0.529 \\
d_{0} & =-2.033 \\
c_{2} & =0.953 \\
d_{2} & =-1.271 . \tag{15}
\end{align*}
$$

