University of Massachusetts Amherst

Yield Asymmetry in Bethe-Heitler Study $\gamma \mathrm{p} \rightarrow e^{+} e^{-}(\mathrm{p})$

Wednesday, October 82019

Overview of Slides

- Quick Garfield update from 2 weeks ago
- TOF issue
- Objective 2: Using BH pairs as a polarimeter
- Objective 3: Towards a proton charge radius measurement
- Missing Mass squared data and MC comparison

Capacitance vs Wire Number 1 Carbon Tube

Capacitance vs Wire Number
2 Carbon Tubes

Objectives of the BH Analysis:

1. Use Bethe-Heitler pair production for verification of normalization in the Charged Pion Polarizability experiment.
2. Extract the polarization signal of the BH pairs. Measure the yield asymmetry.
3. Measure the form factor/charge radius of the proton.

Cuts for $\gamma \mathrm{p} \rightarrow e^{+} e^{-}(\mathrm{p})$

Preselection Cuts

1. Default GlueX cuts: https://halldweb.jlab.org/wiki/index.php/Spring_2017_Analysis_Launch_Cuts
2. Require $\mathrm{E} / \mathrm{p}>0.7$ for electron and positron tracks in FCAL and BCAL

DSelector Cuts

1. Cut on coherent peak: $8.12<\mathrm{E} \gamma<8.88$
2. Require both electron and positron tracks have hit in FCAL
3. Require both electron and positron tracks have hit in TOF
4. Require dMinKinFitCL > 10E-6
5. Eliminate events with NumUnusedTracks ≥ 2, (Split up data into 1 unused and 0 unused.) Today we are only looking at 0 unused track events.
6. Eliminate events with Energy_UnusedShowers > 0
7. TOF dE/dx cut for electron and positron tracks at 3σ
8. FCAL DOCA cut for e+ and e-tracks at 3σ
9. Cut on $\frac{E_{1}}{p_{1}}$ and $\frac{E_{2}}{P_{2}}$ at $\pm 3 \sigma$

OBJECTIVES

2. Use BH pairs as a polarimeter.

$\overrightarrow{p_{t}}$ and $\vec{p}_{t_{2}}$ are the transverse momenta of the leptons.

$P_{\gamma}=$ photon polarization; $\quad x=$ energy fraction carried by e^{+}

$$
\begin{gathered}
\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \vec{p}_{t_{1}} \mathrm{~d}^{2} \vec{p}_{t_{2}}}=\frac{2 \alpha^{3} Z^{2} \omega^{4} x^{2}(1-x)^{2}}{\pi^{2}\left(\vec{q}^{2}\right)^{2}} \times\left[W_{\mathrm{unp}}+P_{\gamma} W_{\mathrm{pol}} \cos (2 \phi)\right] \times\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2} \\
W_{\text {unp }}=\left[x^{2}+(1-x)^{2}\right]\left|\vec{J}_{T}\right|^{2}+m^{2}\left|J_{S}\right|^{2} ; \quad W_{\mathrm{pol}}=-2 x(1-x)\left|\vec{J}_{T}\right|^{2} \\
J_{S}=\frac{1}{\vec{p}_{t_{1}}^{2}+m^{2}}-\frac{1}{\vec{p}_{t_{2}}^{2}+m^{2}} ; \quad \overrightarrow{\vec{p}_{T}}=\frac{\overrightarrow{p_{1}}}{p_{t_{1}^{2}}^{2}+m^{2}}+\frac{\overrightarrow{p_{t}}}{p_{t_{2}^{2}}^{2}+m^{2}}
\end{gathered}
$$

2. Use BH pairs as a polarimeter $\rightarrow>$ Extract the yield asymmetry

ϕ is angle between the polarization direction and \vec{J}_{T}

$$
\vec{J}_{T}=\frac{\vec{p}_{t_{1}}}{p_{t_{1}^{2}}^{2}+m^{2}}+\frac{\vec{p}_{t_{2}}}{p_{t_{2}^{2}}+m^{2}}
$$

$$
\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \overrightarrow{p_{t_{1}}} \mathrm{~d}^{2} \overrightarrow{p_{t}}}=\frac{2 \alpha^{3} Z^{2} \omega^{4} x^{2}(1-x)^{2}}{\pi^{2}\left(\vec{q}^{2}\right)^{2}} \times\left[W_{\mathrm{unp}}+P_{\gamma} W_{\mathrm{pol}} \cos (2 \phi)\right] \times\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2}
$$

PARA and PERP runs are 90 degrees out of phase $=>\cos 2(\phi+\pi / 2)=-\cos 2 \phi$

2. Use BH pairs as a polarimeter \rightarrow Extract the yield asymmetry ϕ is angle between the polarization direction and $\vec{J}_{T} \quad \vec{J}_{T}=\frac{\vec{p}_{t_{1}}}{p_{t_{1}}^{2}+m^{2}}+\frac{\vec{p}_{t 2}}{p_{t 2}^{2}+m^{2}}$ $\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \vec{p}_{t_{1}} \mathrm{~d}^{2} \vec{p}_{t_{2}}}=\frac{2 \alpha^{3} Z^{2} \omega^{4} x^{2}(1-x)^{2}}{\pi^{2}\left(\vec{q}^{2}\right)^{2}} \times\left[W_{\text {unp }}+P_{\gamma} W_{\text {pol }} \cos (2 \phi)\right] \times\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2}$

PARA and PERP runs are 90 degrees out of phase $=>\cos 2(\phi+\pi / 2)=-\cos 2 \phi$

$$
Y_{\|}(\phi) \propto N_{\|}\left[\sigma_{0} A(\phi)\left(1-P_{\|} \Sigma \cos 2 \phi\right)\right] \quad Y_{\perp}(\phi) \propto N_{\perp}\left[\sigma_{0} A(\phi)\left(1+P_{\perp} \Sigma \cos 2 \phi\right)\right]
$$

2. Use BH pairs as a polarimeter \rightarrow Extract the yield asymmetry ϕ is angle between the polarization direction and $\vec{J}_{T} \quad \vec{J}_{T}=\frac{\vec{p}_{t_{1}}}{p_{t_{1}}^{2}+m^{2}}+\frac{\vec{p}_{t_{2}}}{p_{t 2}^{2}+m^{2}}$ $\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \vec{p}_{t_{1}} \mathrm{~d}^{2} \overrightarrow{p_{t}}}=\frac{2 \alpha^{3} Z^{2} \omega^{4} x^{2}(1-x)^{2}}{\pi^{2}\left(\vec{q}^{2}\right)^{2}} \times\left[W_{\text {unp }}+P_{\gamma} W_{\text {pol }} \cos (2 \phi)\right] \times\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2}$

PARA and PERP runs are 90 degrees out of phase $=>\cos 2(\phi+\pi / 2)=-\cos 2 \phi$
$Y_{\|}(\phi) \propto N_{\|}\left[\sigma_{0} A(\phi)\left(1-P_{\|} \Sigma \cos 2 \phi\right)\right] \quad Y_{\perp}(\phi) \propto N_{\perp}\left[\sigma_{0} A(\phi)\left(1+P_{\perp} \Sigma \cos 2 \phi\right)\right]$
$Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)=N_{\perp} \sigma_{0} A(\phi) \Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)$
$Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)=N_{\perp} \sigma_{0} A(\phi)\left[2+\Sigma \cos 2 \phi\left(P_{\perp}-P_{\|}\right)\right]$
2. Use BH pairs as a polarimeter -> Extract the yield asymmetry ϕ is angle between the polarization direction and \vec{J}_{T}

$$
\vec{J}_{T}=\frac{\vec{p}_{t_{1}}}{p_{t_{1}^{2}}^{2}+m^{2}}+\frac{\vec{p}_{t_{2}}}{p_{t_{2}^{2}}^{2}+m^{2}}
$$

$$
\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \vec{p}_{t_{1}} \mathrm{~d}^{2} \overrightarrow{p_{t}}}=\frac{2 \alpha^{3} Z^{2} \omega^{4} x^{2}(1-x)^{2}}{\pi^{2}\left(\vec{q}^{2}\right)^{2}} \times\left[W_{\text {unp }}+P_{\gamma} W_{\mathrm{pol}} \cos (2 \phi)\right] \times\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2}
$$

PARA and PERP runs are 90 degrees out of phase $=>\cos 2(\phi+\pi / 2)=-\cos 2 \phi$
$Y_{\|}(\phi) \propto N_{\|}\left[\sigma_{0} A(\phi)\left(1-P_{\|} \Sigma \cos 2 \phi\right)\right] \quad Y_{\perp}(\phi) \propto N_{\perp}\left[\sigma_{0} A(\phi)\left(1+P_{\perp} \Sigma \cos 2 \phi\right)\right]$
$\left.\begin{array}{l}Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)=N_{\perp} \sigma_{0} A(\phi) \Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right) \\ Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)=N_{\perp} \sigma_{0} A(\phi)\left[2+\Sigma \cos 2 \phi\left(P_{\perp}-P_{\|}\right)\right]\end{array} \quad \frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)}{2+\Sigma \cos 2 \phi\left(P_{\perp}-P_{\|}\right)}\right)$

$$
\begin{aligned}
& \frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)}{2+\Sigma \cos 2 \phi\left(P_{\perp}-P_{\|}\right)} \\
& \mathrm{Pol}=0 \text { and } 90 \text { runs }
\end{aligned}
$$

OBJECTIVES

3. Measure the form factor/charge radius of the proton.

$$
\frac{\mathrm{d} \sigma_{B}^{c}}{\mathrm{~d} x \mathrm{~d}^{2} \overrightarrow{p_{t_{1}}} \mathrm{~d}^{2} \overrightarrow{p_{t_{2}}}} \propto\left|F_{\text {nuclear }}\left(\vec{q}^{2}\right)-F_{\text {atomic }}\left(\vec{q}^{2}\right)\right|^{2}
$$

i.) Get t distribution for the data.
ii.) Do MC with standard dipole form factor and get t distribution.
iii.) Divide data by simulation and look for deviations from standard dipole at really low momentum transfer.

Need to understand MC at low t

