MWPC Drift Time Studies

Andrew Schick, Sean McGrath

September 2, 2015

Outline

Drift Time Studies

Experimental Setup Measuring the Drift Time Results

Drift Time Studies

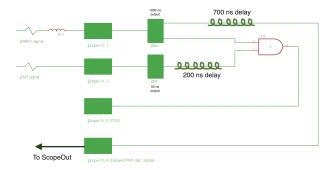
What is the time it takes for ionized charge to reach the anode for a given gas $\ensuremath{\mathsf{mixture?}}$

The different gas mixtures tested:

- 1. Ar: CO_2 in an 80:20 ratio
- 2. Ar: CO_2 in a 90:10 ratio
- 3. Ar: CO_2 : CF_4 in a 88:2:10 ratio

Cosmic rays were used as the ionizing source for these tests.

Experimental Setup


- Nal PMT
- MWPC
- Coincidence Trigger
- ScopeOut

MWPC Studies

Figure 1: MWPC suspended above PMT

MWPC Studies

Figure 2: Trigger Logic

MWPC Studies

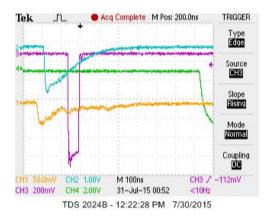
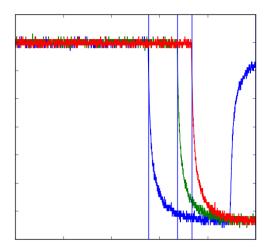
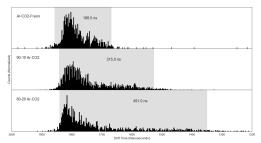
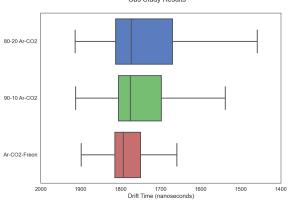



Figure 3: Scope capture of the 4 channels.

Measuring the Drift Time


By measuring the spread in the delayed PMT signal's arrival, we can extract the drift time.

The voltages to achieve 10^5 gain for the gas mixtures tested:


- 1. Ar:CO $_2$ 80:20 @ 2000 V
- 2. Ar:CO $_2$ 90:10 @ 1800 V
- 3. Ar:CO₂:CF₄ 88:2:10 @ 2100 V

Results

Gas Study Results

Figure 4: Drift time for the three mixtures.

Gas Study Results

Figure 5: Box and Whisker plot