Angular distributions

Using spin density matrix elements

$$\begin{split} W(\cos\theta,\phi,\Phi) = & \frac{3}{4\pi} \left[\tfrac{1}{2} (1-\rho_{00}^0) + \tfrac{1}{2} (3\rho_{00}^0 - 1) \cos^2\theta - \sqrt{2} \operatorname{Re} \rho_{10}^0 \sin 2\theta \cos\phi - \rho_{1-1}^0 \sin^2\theta \cos 2\phi \right. \\ & \left. - P_\gamma \cos 2\Phi(\rho_{11}^1 \sin^2\theta + \rho_{00}^1 \cos^2\theta - \sqrt{2} \operatorname{Re} \rho_{10}^1 \sin 2\theta \cos\phi - \rho_{1-1}^1 \sin^2\theta \cos 2\phi \right. \\ & \left. - P_\gamma \sin 2\Phi(\sqrt{2} \operatorname{Im} \rho_{10}^2 \sin 2\theta \sin\phi + \operatorname{Im} \rho_{1-1}^2 \sin^2\theta \sin 2\phi) \right] \end{split}$$

If it is possible to choose the z axis so that s-channel helicity is conserved, W takes a particularly simple form as a function of $\Psi \equiv \Phi - \phi$, namely

$$W(\theta, \Psi) \propto (\sin^2 \theta + P_{\gamma} \sin^2 \theta \cos 2\Psi).$$
 (D2a)

This results from the relationships

$$\rho_{1-1}^1 = -\operatorname{Im} \rho_{1-1}^2 = \frac{1}{2} \tag{D2b}$$

with all other $\rho_{ib}^{\alpha} = 0$ in (D1).

Definition of Φ

Here, P_{γ} is the degree of linear polarization of the photon; Φ is the angle of the photon electric polarization vector with respect to the production plane measured in the over-all (γp) c.m. system; θ and ϕ are the polar and azimuthal angles of the π^+ in the ρ^0 rest frame. (See Fig. 12 and Ref. 36.)

Definition of z-axis

We consider the angular distribution of ρ^0 decay in three reference systems which differ in the choice of the spin-quantization axis (z axis): the Gottfried-Jackson system, where the z axis is the direction of the incident photon in the ρ^0 rest system; the helicity system, where the z axis is the direction of the ρ^0 in the over-all (γp) c.m. system, i. e., opposite to the direction of the outgoing proton in the ρ^0 rest system; and the Adair system, where the z axis is along the direction of the incident photon in the over-all (γp) c.m. system. The y axis is always normal to the production plane. The For forward-produced ρ^0 mesons, all three systems coincide.

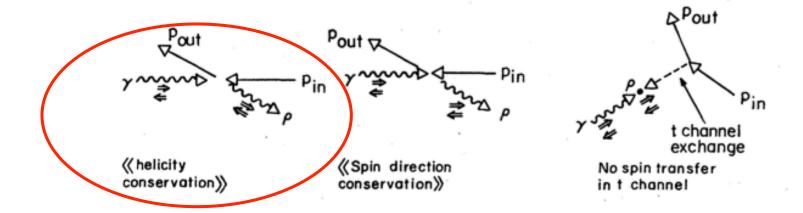
J. BALLAM *et al*. 560

Depending upon the production mechanism, the ρ^0 may be aligned in one of these three systems. The system which gives the simplest description of the ρ^0 is then: (1) the Gottfried-Jackson system for t-channel helicity conservation (resulting from, for example, $J^P=0^+$ exchange with no absorption); (2) the helicity system for s-channel c.m. helicity conservation; (3) the Adair system for "spin independence" in the s-channel c.m. system.³⁷ One

Bauer, Spital, Yennie, and Pipkin: Hadronic properties of the photon Rev. Mod. Phys., Vol. 50, No. 2, April 1978

Angular Distributions in $\pi\pi$ rest frame

• Depending upon the production mechanism, the spin of the ρ^0 may be aligned along the z axis in one of these three systems (Gilman et al., 1970). The system which gives the simplest description of the ρ^0 is then: (1) The Gottfried-Jackson system for t-channel helicity conservation; (2) the helicity system for s-channel helicity conservation (SCHC); (3) the Adair system for "spin independence" in the s-channel system. Figure 85 shows a schematic representation of these three coordinate systems.



Choice of a specifies system used

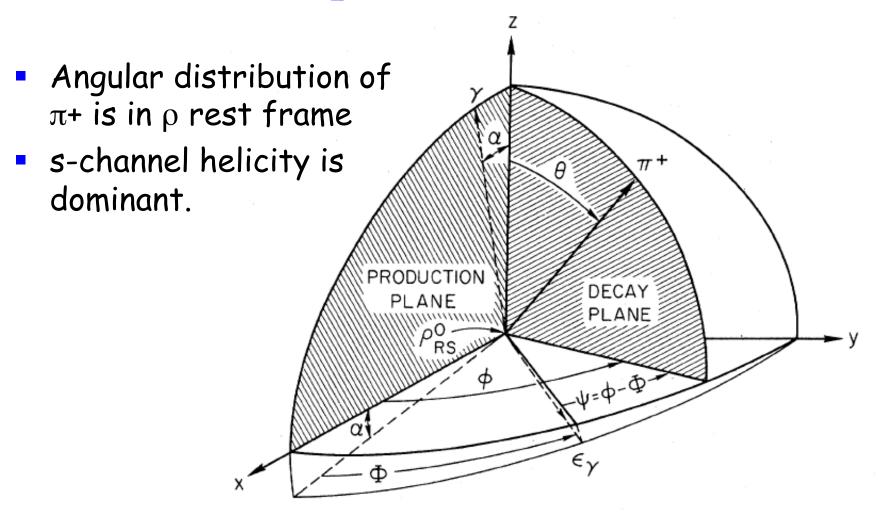


FIG. 12. Angles used in the study of ρ^0 decay. The angle α is zero in the Gottfried-Jackson system.

SCHC

The ρ^0 decay distribution may be simplified if we use the angle $\Psi = \phi - \Phi$ which, in the forward direction, is the angle between the photon polarization and the ρ^0 decay plane. If the ρ^0 production mechanism conserves s-channel helicity, i.e., the ρ is transverse and linearly polarized like the photon, then in the helicity system

$$\rho_{ik}^{\alpha} = 0, \text{ except}$$

$$\rho_{1-1}^{1} = -Im \, \rho_{1-1}^{2} = \frac{1}{2}$$

$$\rho_{11}^{0} = \frac{1}{2}$$

$$\rho_{1-1}^1 = -\text{Im}\rho_{1-1}^2 = \frac{1}{2} \tag{6}$$

and all other ρ_{ik}^{α} in Eq. (2) are 0. In these circumstances Ψ is the azimuthal angle in the helicity system of the decay π^+ with respect to the ρ^0 polarization plane and the decay angular distribution is proportional to $\sin^2\theta\cos^2\Psi$. The distribution of Ψ is also related to P_{σ} if the helicity-flip terms are zero: For 100% linear polarization the decay is $\sin^2\theta\cos^2\Psi$ for $P_{\sigma}=+1$ while for $P_{\sigma}=-1$ the decay distribution is $\sin^2\theta\sin^2\Psi$.