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We consider photoproduction of e+e− pairs on a nu-
cleus with atomic weight A and atomic number Z:

γ + A → e+ + e− + A′

at photon energies ω a few GeV’s and very small momen-
tum transfer | ~Q| relevant for PrimEx.

Cross section of this process consists of the contribu-
tions listed below in order of importance.

• Bethe-Heitler mechanism of pair production on the
nucleus (coherent process) with screening effects due
to atomic electrons and Coulomb distortion.

• Pair production on atomic electrons with excitation
of all atomic states. It contains correlation effects
due to presence of other electrons and nucleus.

• Quantum Electrodynamical (QED) radiative cor-
rections (of order α/π with respect to dominant
contributions): (i) virtual-photon loops and (ii) real-
photon process γ + A → e+ + e− + A + γ, where
the final photon has the energy ω′ ≤ δω (energy
resolution in experiment).
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• Nuclear incoherent contribution – quasi-elastic, or
quasi-free process on the proton γ+p → e++e−+p.

• Nuclear coherent contribution, or virtual Compton
Scattering (CS) two-step mechanism γ +A → γ∗+
A → e+ + e− + A.

Below these contributions are reviewed in some detail.

Pair production on nucleus

The exclusive cross section on the nucleus has the form

d4σA

dε+dθ−dθ+dφ
= Z2 α3

2πω3 ~Q4
|FA( ~Q2)− fat( ~Q2)|2|T |2,

where α = 1/137.036 is the fine-structure constant,
θ+, θ− are the lepton polar angles,
φ is the azimuthal angle between the plane spanned by
the momenta ~k, ~p+ and the plane spanned by ~k, ~p−,
k = (ω,~k) is the photon 4-momentum,
p+ = (ε+, ~p+) and p− = (ε−, ~p−) is the positron and
electron 4-momentum respectively and
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me is the electron mass.
~Q = ~k−~p+−~p− is 3-momentum transfered to the nucleus.
In “no-recoil” approximation Q0 = ω − ε+ − ε− = 0.
|T |2 is a kinematic factor

|T |2 = p+p− sin θ+ sin θ−[−p2
+

ξ2
+

(4ε2
− − ~Q2) sin2 θ+

−p2
−

ξ2−
(4ε2

+ − ~Q2) sin2 θ− +
2ω2

ξ+ξ−
(p2

+ sin2 θ+

+p2
− sin2 θ−)

+
2p+p−
ξ+ξ−

(2ε2
+ + 2ε2

− − ~Q2) sin θ+ sin θ− cos φ]

where ξ± = ε± − p± cos θ± and p± = (ε2
± −m2

e)
1/2.

x+ ≡ ε+/ω (x− ≡ ε−/ω) is fraction of energy carried
by positron (electron), and x+ + x− = 1.

fat( ~Q2) is the atomic form factor describing charge
distribution of electrons ρat(r). Screening of the nucleus

charge by atomic electrons becomes important if | ~Q| <
a−1

at , where aat ≈ 137Z−1/3/me ∼ 3 × 10−9 cm is the
atomic size. Since the main contribution to cross section
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comes from the region close to the minimal possible value

| ~Q|min ∼ me(
meω

2ε+ε−
) =

me

2x+x−
(
me

ω
),

then at high energies, where ω >> me and x+, x− are
not too close to zero, | ~Q|min is always less than a−1

at ∼ 10
keV, and the screening is very important.

In calculation the Thomas-Fermi-Moliere model [Moliere]
is used

fat( ~Q2) = 1−
3∑

i=1

ai
~Q2

~Q2 + b2
i/b

2
0

,

with parameters b0, bi and ai.

Further, FA( ~Q2) is the nuclear charge form factor
(Fourier transform of ρA(r)) which behaves like

FA( ~Q2) ≈ 1− 1

6
~Q2〈r2〉A

where 〈r2〉A is the m.s.r. of the nucleus. In the conditions
of PrimEx this form factor can always be replaced by
unity since | ~Q| < a−1

at << r−1
nucl.
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Energy distribution of the positrons has the form [Bethe
and Heitler]:

dσA

dε+
=

∫
d4σA

dε+dθ−dθ+dφ
dθ+ dθ− dφ

= Z2 α3

m2
eω

3
[(ε2

+ + ε2
−)(φ1 − 4

3
log Z − 4f )

+
2

3
ε+ε−(φ2 − 4

3
log Z − 4f )].

f ≡ f ((αZ)2) is the Coulomb distortion function
[Bethe and Maximon]

f ((αZ)2) = (αZ)2
∞∑

n=1

1

n[n2 + (αZ)2]
.

For the 12C nucleus f ≈ 2.3× 10−3.

Functions φ1,2 depend on the parameter
γ = 100Z−1/3 me

ωx+x− and account for the screening effect.
If γ >> 1 then screening is unimportant, while
for γ ≈ 0 screening is essential.
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In the conditions of PrimEx screening leads to reduc-
tion of cross sections by a factor ∼ 1.3 − 1.7 depending
on x+. The functions φ1,2 are calculated in the Thomas-
Fermi-Moliere model.

Note that the recoil of the nucleus can be neglected
as the energy of the final nucleus is of the order ∼ 1 keV
in the conditions of PrimEx.

Pair production on atomic electrons

The corresponding cross section has the form

d4σe

dε+dθ−dθ+dφ
= Z

α3

2πω3 ~Q4
H( ~Q2)|T |2,

where H( ~Q2) is a correlation factor related to all atomic
excitations. One can also say that it accounts for screen-
ing effects due to the presence of other electrons and the
nucleus. It can be chosen as [Tsai]:

H( ~Q2) =
a′4 ~Q4

(1 + a′2 ~Q2)2
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with a′ = 1194Z−2/3/(e1/2me) which follows from the
value of radiation logarithm L′rad in (see below).

The energy distribution of positrons has the form

dσe

dε+
= Z

α3

m2
eω

3
[(ε2

++ε2
−)(ψ1−8

3
log Z)+

2

3
ε+ε−(ψ2−8

3
log Z)].

The functions ψ1,2 [Wheeler and Lamb] depend on the
parameter ε = 100Z−2/3 me

ωx+x− .

Values φ1(0) and ψ1(0) are directly related to the unit
radiation length of material

X0 =
716.405 A

Z2(Lrad − f ) + ZL′rad

,

where in the Thomas-Fermi-Moliere model

Lrad =
1

4
φ1(0)− 1

3
log(Z) = log(184.15 Z−1/3),

L′rad =
1

4
ψ1(0)− 2

3
log(Z) = log(1194 Z−2/3).

For example, for carbon one obtains X0 = 42.6983 g/cm2.
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Cross section can be further corrected for recoil of the
target electron

dσe

dε+
→ dσe

dε+
(1− δrec),

where

δrec = (
me

ω
)

4L3/3− 3L2 + 6.84L− 21.51

28L/9− 218/27

with L ≡ log(2ω/me). This is a small effect of order
4× 10−3 at high photon energies.

Radiative corrections

QED radiative corrections are included in the method
of Weizsacker-Williams following the work of Mork.

There are 16 Feynman diagrams which describe virtual-
photon loops (vertex modification, lepton self-energy in-
sertions, box diagrams and vacuum polarization), and
real-photon emission. The latter contribution depends on
the energy resolution. Specifically, if the energy difference
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ω−ε+−ε− is determined with accuracy δω then the emit-
ted photon may have the energy ω′ ≤ ω′max = δω. The
energy resolution in pair production experiments δω/ω
varies from 1.70% to 1.85%.

The radiative corrections modify the lowest-order cross
section

dσA,e

dε+
→ dσA,e

dε+
(1 + δRC),

and for the correction factor δRC we obtain

δRC = G1 + G2 log(
δω

ω
) + G3(log(R))−1.

Function G2 originates from real-photon contribution, G1

– from real- and virtual-photon contributions and G3 –
from vacuum-polarization diagrams.

The quantity R is defined as

R = [(
me

2ωx+x−
)2 + (

Z1/3

183
)2]−1/2,

and R ≈ 2x+x−ω/me if screening is unimportant, while
R ≈ 183Z−1/3 for complete screening relevant for PrimEx.
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Radiative correction due to vacuum polarization is
small and therefore δRC virtually depends only on x+.

Typical radiation correction is shown on Fig. 1. For
the other photon energies the corresponding δRC practi-
cally coincides with the curve in Fig. 1.

Nuclear incoherent contribution

The photon interacts with the nucleon inside the nu-
cleus as with a free nucleon. The cross section of this
quasi-free (quasi-elastic) incoherent process in the Fermi-
gas model can approximately be written as follows

d4σN

dε+dθ−dθ+dφ
= Z

α3

2πω3 ~Q4
|Fp( ~Q2)|2IF ( ~Q2)|T |2.

The factor IF ( ~Q2) takes into account Pauli blocking for
the final proton

IF ( ~Q2) =
3| ~Q|
4pF

(1−
~Q2

12p2
F

), if |~Q| ≤ 2pF,

= 1, if |~Q| > 2pF.
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Figure 1: Radiative correction δRC as a function of the
fraction of energy carried by positron.
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Here pF is the Fermi momentum for the nucleus A, in
particular, for 12C nucleus, one finds from electron scat-
tering 12C(e, e′) experiments [Whitney et al.] pF = 221
MeV.

The contribution from the neutrons is neglected, as
well as magnetic moments of the nucleons. The lat-
ter contribution is proportional to a very small factor
~Q2/(4M 2

N).

Fp( ~Q2) is the proton charge form factor (for example,
in the dipole parameterization)

Fp( ~Q2) = (1 +
~Q2

0.71 GeV2)
−2.

This form factor at very small values of | ~Q| is practically
equal to unity.

The energy distribution is obtained by integration of
this cross section over the angles of the leptons

dσN

dε+
= Z

4α3

m2
eω

3

βF

2
{−(ε2

+ + ε2
−)B
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+4ε+ε−[
1

2
+ βF + βF (1 + βF )B]},

where

βF =
3me

2pF
(1− meω

2ε+ε−
)2, B = log(

βF

1 + βF
).

At very small | ~Q|, of the order me or less, the incoher-
ent cross section is suppressed due to the Pauli blocking
effect. Rough estimate gives

βF ∼ 3.4× 10−3,
βF

2
log(βF ) ∼ 10−2,

therefore it is at most Z−1×10−2 of the dominant Bethe-
Heitler cross section on the nucleus.

Nuclear coherent contribution

The nuclear coherent contribution is the most com-
plicated and least known mechanism of pair production.
The corresponding amplitude of the virtual Compton scat-
tering (CS) on the nucleus, MV CS, describes the process
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γA → γ∗A → e+e−A. We need this amplitude for al-
most forward scattering in the energy region a few GeV’s,
i.e. above the region of excitation of baryon resonances.
At these enrgies this is diffractive process which can be
viewed as the t−channel exchanges by Regge trajectories
associated with the so-called Pomeron and a few scalar
and tensor mesons.

At very high energies and small momentum transfer
we can express the virtual CS amplitude on the nucleus in
terms of the spin-averaged Compton scattering amplitude
on the free proton (neglecting the neutron contributions):

MV CS ≈ ZM(p)
V CS.

The magnitude of |MV CS|2 is extremely small, there-
fore it is sufficient to keep only the interference between
the dominant Bethe-Heitler amplitude on the nucleus and
virtual CS amplitude 2Re(MAM∗

VCS). The virtual CS

amplitude on the proton, M(p)
V CS, can be related to for-

ward scattering Compton amplitude with real photons
f1(ω). The energy dependence of this amplitude is known
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from high-energy CS experiments [Armstrong et al.]. In
particular, for the real part we obtain parameterization

Re f1(ω) = − α

Mp
[0.76 + 1.88(

ω

ω0
)1/2],

where ω0 =1 GeV and Mp = 938.3 MeV is the proton
mass.

Here we consider only kinematics for pair production
at very small (but not equal) angles

δ+ ∼ δ− ∼ 1, δ± =
ε±θ±
me

,

and the region

|δ+ − δ−| < me

ε±
, |φ− π| < me

ε±
,

which gives the dominant “logarithmic” contribution to
the energy distribution in the conditions of PrimEx.

In these conditions we find the ratio of the interference
cross section and the nucleus Bethe-Heitler cross section

R ≈ (x− − x+)
m2

e

ωMp
[0.76 + 1.88(

ω

ω0
)1/2].
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At photon energy 5 GeV, for example, one obtains

R ≈ 2.6× 10−7(x− − x+).

For the energy distribution we get the estimate

dσinter

dε+
∼ 10−7 (x− − x+)× dσA

dε+
.

This minor contribution can be completely neglected.

Note that the interference results in asymmetry be-
tween the positron and electron yields. The cross section
is not anymore symmetrical in variables x+, x− and de-
pends on which lepton (e+ or e−) has greater energy, i.e.

σ(x+, x−)|x−>x+ > σ(x+, x−)|x+>x−.

This is an example of the charge asymmetry caused by
the BH – virtual CS interference in general case [Bjorken,
Drell and Frautschi]

2Re(MAM∗
VCS)

|MA|2 =
σ(e+, e−)− σ(e−, e+)

σ(e+, e−) + σ(e−, e+)
.
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mechanism contribution in %
nuclear Bethe-Heitler 82.789

atomic electrons 17.185
nuclear incoherent (quasielastic) 0.026
nuclear coherent (virtual CS) ∼ 10−5

total 100.00

Table 1: Various contributions to cross section at photon
energy 4.91 GeV. x+ = 0.4 and x− = 0.6

In order to minimize the virtual CS contribution the
“symmetric” conditions for the leptons

ε+ = ε−, θ+ = θ− and φ = π

are the most appropriate. In this case the interference
term 2Re(MBHM∗

VCS) vanishes identically and one is
left with virtual CS amplitude squared |MV CS|2, which
can be safely omitted.

The cross section (energy distribution) including all
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above contributions is thus

dσ

dε+
=

dσA

dε+
+

dσe

dε+
+

dσN

dε+
.

Finally, the total cross section

σtot =

∫ ω−me

me

dσ

dε+
dε+

is presented in Table 2.
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photon energy in GeV σtot in mb
4.91 348.8
4.97 348.9
5.03 349.1
5.08 349.0
5.13 349.1
5.18 349.3
5.23 349.2
5.28 349.5
5.34 349.3
5.41 349.5
5.46 349.5

Table 2: Total cross section of pair production on carbon
at various photon energies
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Figure 2: Energy distribution of positrons in e+e− pro-
duction on carbon. The photon energy is 4.91 GeV.
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Figure 3: The same as in Fig. 2 but for the photon energy
5.46 GeV.
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