Progress Towards a Measurement of the Σ Beam

 Asymmetry of the $\vec{\gamma} p \rightarrow a_{0}^{0}(980) p$ Reaction at$$
E_{\gamma} \approx 9 \mathrm{GeV}
$$

Peter G. Solazzo

The George Washington University
May 2023

Photoproduction of the $a_{0}(980)$

- We are interested in measuring the Σ beam asymmetry of $\gamma p \rightarrow a_{0}^{0} p$, and comparing with $\gamma p \rightarrow \pi^{0} p$ asymmetry. We will compare scalar and pseudoscalar meson photoproduction.
- $\eta \pi^{0}$ decays into 4γ

Σ Beam Asymmetry of $\vec{\gamma} p \rightarrow p a_{0}^{0}(980)$

- The Beam Asymmetry measures how the yield of a reaction changes given different polarizations of the

$$
\frac{N(\phi)_{\|}-N(\phi)_{\perp}}{N(\phi)_{\|}+N(\phi)_{\perp}}=f(\Sigma)
$$

incident particle, in this case
a photon.

- This gives us a first insight into the dynamics of $\vec{\gamma} p \rightarrow p a_{0}^{0}(980)$.
- Dynamics elucidate the relevant degrees of freedom.

Reaction Filter and Basic Cuts

- Data and Reaction Filter
- Final state is 4γ
- Using version 52 of 2017 Analysis Launch Data
- Reaction Filter options: tree_piOeta__B4_M17_M7
- First Data Reduction Cuts
- Confidence level cut at 0.01
- Beam Energy Cut for Coherent Peak $8.2<E_{\gamma}<8.9 \mathrm{GeV}$
- Fiducial Cuts
- Cuts around gap between FCAL and BCAL
- Particle ID
- Accidental Subtraction
- Nota Bene: Uniqueness Tracking

4-Photon Mass Pre-Cuts and Weighting

- After reaction Filter
- $8.2<E_{\gamma}<8.9$ GeV
- $\mathrm{CL}>0.01$
- No accidental Subtraction Yet
- No Fiducial Cuts Yet

Fiducial Cut

The end of the BCAL and the gap between the BCAL and FCAL are evident. We cut events with photons near the edge.

Accidental Subtraction

There is a 4th RF bump on either side that is excluded. The rest of the out of time hits are weighted at $-1 / 6$ and the central peak is weighted 1.

Tic-Tac-Toe Subtraction

Weighting scheme is:

- Central box is 1
- Eta Sideband weighted as $-\frac{b}{a+c}$
- Pion Sideband weighted as $-\frac{e}{d+f}$
- Corners are as: $\frac{b e}{(a+c)(d+f)}$

Baryon Cuts

Baryon Cuts

MEtap Precut

MPip Precut

The Resulting 4-Photon Spectrum

t Binning

Asymmetry Calculation

$$
\begin{gathered}
\frac{N(\phi)_{\|}-N(\phi)_{\perp}}{N(\phi)_{\|}+N(\phi)_{\perp}}=\frac{F_{R}-1+\frac{F_{R} P_{R}+1}{P_{R}+1} 2 \bar{P} \sum \cos \left(2\left(\phi-\phi_{0}\right)\right)}{F_{R}+1+\frac{F_{R} P_{R}-1}{P_{R}+1} 2 \bar{P} \sum \cos \left(2\left(\phi-\phi_{0}\right)\right)} \\
\frac{N(\phi)_{\|}-N(\phi)_{\perp}}{N(\phi)_{\|}+N(\phi)_{\perp}}=A+B \cos \left(\phi-\phi_{0}\right)
\end{gathered}
$$

Asymmetry Plots

Theoretical Predictions

https://doi.org/10.1103/PhysRevC.107.015203

Closing Remarks and Planning

- Check $\frac{d E}{d x}$ for proton to ensure reasonable PID
- Dilution factor (non-smooth backgrounds)
- Systematics
- Beam Polarization
- Extract Σ beam asymmetry from full fit and compare with Regge cut model predictions.

THE GEORGE WASHINGTON UNIVERSITY
WASHINGTON, DC

