Projects to get completed and questions answered for proposal submission

- Fix the coherent peak energy
- Fix the target position
- START counter in or out?
- Finalize acceptance calculation for Primakoff $\pi^+\pi^-$ events. Is the simulation working correctly?
- Simulate azimuthal distribution of Primakoff $\pi^+\pi^-$ events. Can we use this to extract the Primakoff yield?
- Tagger microscope intensity rate? Probably want a conservative rate.
- Need to have an estimate of what trues/accidentals will be with electromagnetic and hadronic backgrounds turned on
- Do we need the proposed Cherenkov counter for GlueX?

- Can we use the Primakoff π^0 events that come for free?
 - i. Include nuclear coherent in π^0 event generator. Not done yet.
 - ii. Calculate acceptance for π^0 with linearly polarized photons
 - iii. Use azimuthal distribution of π^0 to measure photon polarization?
 - iv. Is ²⁰⁸Pb the best target for this? There's very little wide angle nuclear coherent with lead; this impacts the polarization measurement.
 - v. Use π^0 yield to measure N_{γ} ·T , # photons × target thickness ? Probably want same photon energy as PRIMEX.
- •What is our trigger condition going to be?
 - i. (2 charged tracks in FDC's) ORed with (E_{FCAL} > E_{threshold}) ?
 - ii. PID for the pion tracks?
 - iii. Trigger rate?
- Nuclear coherent background in the $\pi^+\pi^-$ channel (Sergey)
- Nuclear incoherent background in the $\pi^+\pi^-$ channel (Tulio)
- Projected error bars on $\sigma(\gamma\gamma \to \pi^+\pi^-)$?
- Projected error bar on α_{π} – β_{π} ?