BCAL Timing

Aug. 12, 2011 David Lawrence - JLab

- The current study was done using 3 datasets generated at θ =12°, 20°, and 90°
- Each data set contained 10k events
- $0 \le E_{\gamma} \le 2.0 GeV$
- 5 different segmentation schemes, including "fine"
- Focus placed on uncertainty in time difference ($\Delta t/2$)
- No reconstruction code from *sim-recon* tree has been used. Analysis starts with individual shower steps generated by *hdgeant*

Timewalk Calibration

• Timewalk calibration done for each layer and each end independently.

• Time of each tube includes flight time and shift due to convolution of electronic pulse.

 \bullet The constant term in timewalk function removes all shifts/tof for 12° showers

Functional form of timewalk correction

$$t = c_0 + \frac{c_1}{x^{c_2} + c_3}$$

Before Calibration

All plots for 12°, fine segmentation

After Calibration

Calibration of time difference

- Calibration done for time difference of timewalk corrected values
- · Layers calibrated independently
- Corrected Δt distributions broken up into bins of geometric mean having at least 300 hits.
- Gaussians fit and the σs of each bin used to determine timing resolution function for each layer

Before Calibration

All plots for 12°, fine segmentation

Uncertainty in $\Delta t/2$

• The Δt uncertainty functions for each layer were used to determine the total uncertainty for a shower for each event in the data set.

• The uncertainty is plotted below as a function of geometric mean (in units of GeV) on left and as a simple histogram on right.

Segmentation configurations

LAYERS334_SECTORS111

LAYERS1234_SECTORS1111

LAYERS3322_SECTORS1122

LAYERS22222_SECTORS11222

Additional segmentation Schemes

Time difference resolution summary

All values in ps			
Scheme	12º	20 °	90°
Fine	85	53	27
LAYERS1234_SECTORS1111	89	63	31
LAYERS22222_SECTORS11222	120	86	
LAYERS3322_SECTORS1122	131	103	36
LAYERS334_SECTORS111	128	104	36

Summary and future

- It looks like the 1234 scheme may give very comparable timing resolution as the "fine" scheme
- Both the 1234 and "fine" schemes give significantly better timing resolution than the "course" schemes
- Still need to:
 - Look at time average resolutions
 - Implement any additional segmentation schemes we wish to consider
 - Write up GlueX-Note