Testing the universality of short-range correlations using electron and photon probes at Jefferson Lab

Phoebe Sharp

George Washington University

APS April Meeting

Sacramento, CA

GW

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583, the Jefferson Science Associates Fellowship, and the DOE SCGSR Fellowship.

The Playbook on detecting SRCs from nucleon knockout with electrons

- Work in anti-parallel kinematics
 - x_B > 1
 - Reduce FSI
- High momentum transfer
 - Reduce MEC
- Large missing momentum
 - Hit nucleons above Fermi momentum

• Detect a correlated spectator nucleon?

Schmidt, A., et.al. (CLAS) Nature 578 (2020). *C (e , e ' p)*

Testing Probe Universality of SRCs

SRC @ GlueX: Experimental Details

- November December 2021
- 43 days
- Collaboration at GW, MIT, Duke, MSU, Tel Aviv, ODU, and Jlab
- Analysis Status:
 - Dark Matter Search in peer review
 - Preliminary Short Range Correlations Results

Target	Days on Beam
Liquid Helium 4	10
Liquid Deuterium	4
Carbon Multi-Foil	14

GlueX allows us to learn about multiple reaction channels.

p reactions	n reactions
$\gamma ho o \pi^0 ho$	$\gamma n ightarrow \pi^- p$
$\gamma p o \pi^- \Delta^{++}$	$\gamma n ightarrow \pi^- \Delta^+$
$\gamma p o ho^0 p$	$\gamma n ightarrow ho^- p$
$\gamma p o K^+ \Lambda$	$\gamma n o K^0 \Lambda$
$\gamma p o K^+ \Sigma^0$	γ n $ ightarrow$ $K^0\Sigma^0$
$\gamma p ightarrow \omega p$	$\gamma n ightarrow K^+ \Sigma^-$
$\gamma p o \phi p$	$\gamma n ightarrow K^- \Sigma^+$
:	:
-	•

GlueX allows us to learn about multiple reaction channels.

GlueX is very different from CLAS.

CLAS	Property	GlueX
< 1% Forward,	Momentum	3-10%
< 3% Central	Resolution	(Measures p_{\perp} , $ heta$)
Very Good	Particle ID	Poor
Limited Coverage	Gamma Detection	Nearly 4 π

We need to isolate the ρ^- photoproduction signal.

We need to isolate the ρ^- photoproduction signal.

We need to select high momentum nucleons.

Isolating ρ^- above background

A signature of ρ^- tagged SRC events on He4

GlueX allows us to learn about multiple reaction channels.

A signature of ρ^0 tagged SRC events on C12

ρ^0 photoproduction can be used to test neutron-proton pair dominance.

Photoproduction Observable

 $\frac{\sigma(\rho^0 + p + p)}{\sigma(\rho^0 + p) + n/p}$

ρ^0 photoproduction can be used to test neutron-proton pair dominance.

Conclusion

- We do see (preliminary) evidence of SRC's in photoproduction data.
- Further analysis is needed, and more results will be available soon.

0.4

 $\begin{array}{c} ^{12}C(\gamma,\rho^{0}pp)/^{12}C(\gamma,\rho^{0}p)\\ 10 \\ & \\ & $

0.4

0.35

• Other talks:

Conclusion

- We do see (preliminary) evidence of SRC's in photoproduction data.
- Further analysis is needed, and more results will be available soon.

Bo Yu Talk: Saturday, 1:30, S03

• Other talks:

Jackson Pybus Talk: Wednesday, 3:45, D17

Bhesha Devkota Talk: Friday, 3:45, P03

BACKUP

Generalized Contact Formalism

GlueX: Glossy Schematic

GlueX Collaboration, et al. First Results from The GlueX Experiment. Dec. 2015. ResearchGate, doi:10.1063/1.4949369.

- Carbon target
- 5 GeV beam
- Strict event selection
- Isolate protons in an SRC pair
- Missing momentum >400 MeV/c

Schmidt, A., et.al. Probing the core of the strong nuclear interaction. Nature 578(February 2020).

Korover, I., et. al, (2021). C (e, e'pN) measurements of short range correlations in the tensor-to-scalar interaction transition region The CLAS Collaboration. Physics Letters B, 820. 136523

Pybus, J. R., et. al, (2020). Generalized contact formalism analysis of the 4 He (e , e pN) reaction. *Physics Letters B*, 805, 135429. I. Korover et al., "Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He(e,e'pN) Triple-Coincidence Reaction" PRL 113 022501 (2014)