CDC Simulation Studies

David Lawrence, JLab Oct. 8, 2008

4 CDC Geometries Currently Under Study

These represent the axial/stereo configurations that will be studied via simulation. The orientation is listed from outermost layer (top) to innermost layer (bottom).

Relative ϕ -shifts between layers is implemented in all designs for axial wires. Stereo wires are also ϕ -shifted for geometries "C" and "D".

Geometry A	Geometry B	Geometry C	Geometry D*
8 axial	8 axial	4 axial	3 stereo -6º
2 stereo +6 ^o	4 stereo +6 ^o	4 stereo +6º	8 axial
2 stereo -6º	5 axial	4 stereo -6º	4 stereo +6º
5 axial	4 stereo -6º	4 axial	4 axial
2 stereo +6 ^o	3 axial	4 stereo +6º	4 stereo -6º
2 stereo -6º		4 stereo -6º	4 axial
3 axial		4 axial	

Consistency Checking

4k single π^+ 1GeV/c events were thrown at 5 discrete angles ranging from 30° to 110°. Multiple scattering etc. was turned OFF

Drift times were smeared via Gaussian to give them a position resolution of 150 μm

A tracking χ^2 was formed from the hit residuals using the known 150 μm resolution

The χ^2 distribution was integrated and compared to the known cumulative χ^2 function

To check consistency between the simulation and reconstruction geometries as well as transport through the magnetic field etc. , thrown values were used

Sensitivity of Probability Function

•An inconsistency exists between simulation and reconstruction for CDC geomD, layer 14. The source of the discrepancy is still not known.

•The effect of a single layer is clearly seen in the probability distributions

Layer 14 problem in geomD

Residuals with respect to the thrown track

Wire and time -based fits starting from the right answer

Full Reconstruction

Summary

- Residual based tracking efficiencies for single track events with no M.S. but with position smearing indicate significant improvement with geomC over the geomA and geomB designs.
- The geomB design (+4 stereo) shows a modest, but measureable improvement over geomA (+2, -2 stereo) for large angles
- An inconsistency still exists between simulation and reconstruction for geomD
- We still need to look at the impact of multiple scattering
- We still need to look at the accuracy of the reconstructed parameters