XPS Based Motion System (status report)

Vanik Kakoyan

Hall D Controls Meeting 4-May-2012

Planed motor-based applications

VME / PLC / Newport XPS based (wiki by Hovanes Egiyan)

- In tagger hall (9+)
 - Goniometer (5 axis)
 - Tagger dump harp (1 axis)
 - Tagger microscope (3 axis)
 - Tagger fixed array (? axis)
- in Hall D (4+)

Collimator table (1 axis)

- Converter/photon harp (1 axis)
- TAC (1 axis) ?
- Gamma profiler (1 axis) ?

Likely the Goniometer comes from Newport with the XPS controller.

XPS - C8 Universal High-Performance Motion Controller (rear panel) Newport_®

Experience | Solutions

GPI04 Male Sub-D37

Trigger in Male Sub-D9

GPI03 Sub-D15

8 x Heidenhain 1 Vpp encoder input

> HOST Ethernet 10/100 Base-T

> REMOTE Ethernet 10/100

> > Base-T

GP101 Female Sub-D37

Power ON/OFF Switch

AC IN

GPIO2 Female Sub-025

8 x Newport stage interface

INHIBIT Input Female Sub-D15

8 x Position compare out 4 Female LEMO Connectors

XPS-C8 Controller Specifications

Universal Driver Modules

- XPS-DRV01 for stepper and DC brush motors
 (supplies a max output current of 3 A and 48 V)
- XPS-DRV02 for DC brushless motors
 (max current of 5 A per phase and 44 Vpp)
- XPS-DRV03 for high-performance DC motors (max current of 5 A and 48 V)
- XPS-DRV00, DRV00P, DRVP1 for any motion device including brushless motors, voice coils and piezoelectric stages

Number of Axes

- 1 to 8 axes of stepper or DC motors using internal drives
- Other motion devices using external third-party drives

Communication Interfaces

- Internet protocol TCP/IP (RJ45 Ethernet)
- Optional XPS-RC remote control

Input/Output

- 30 TTL inputs and 30 TTL outputs
- 4 synch. analog inputs ±10 V, 14 Bit
- 4 synch. analog outputs, 16 Bit
- High-performance analog encoder input on each axis

Motion

- Jogging mode (defined direction and velocity)
- Synchronized point-to-point
- Spindle (continuous motion with periodic position reset)
- Line-arc mode (linear and circular interpolation)
- PVT (complex trajectory based on position, velocity and time coordinates)

Command Set

- Object oriented command language TCL (Tool Command Language)
- 100+ functions
- Real time execution of TCL scripts
- Multi-user capability
- EPICS compatible

(Mark Rivers from APS developed EPICS support)

Controller Configuration

Direct connection-PC

to XPS through a cross over cable

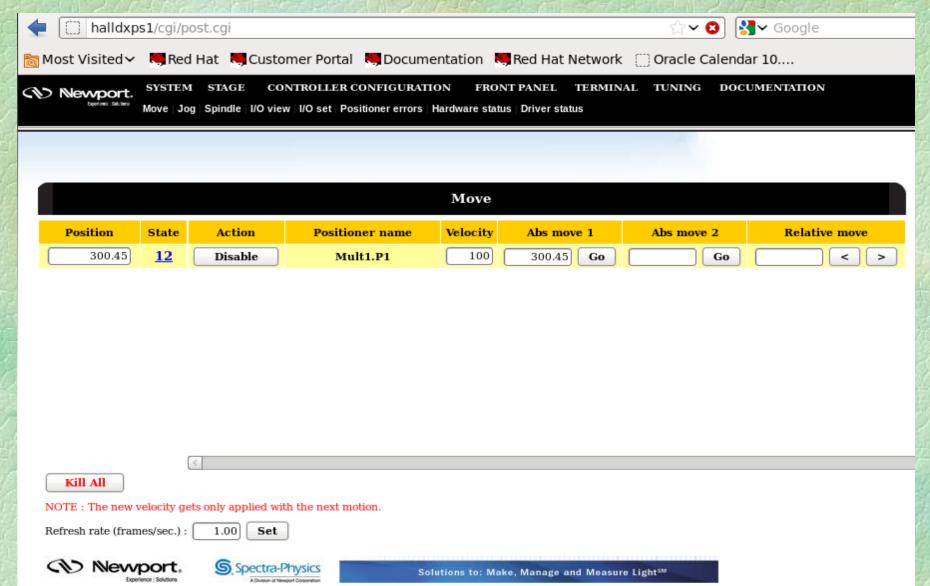
- IP Management: IP name and address
- <u>User Management:</u> Manage user accounts. Two type of users defined: *Administrator* and *User*

WEB connection

- Login as Administrator using the WEB interface
- Build data base for each stage (stages.ini file)
- Define Motion groups: SingleAxis group,XY group,XYZ group and MultipleAxes group

What we have? Our Setup

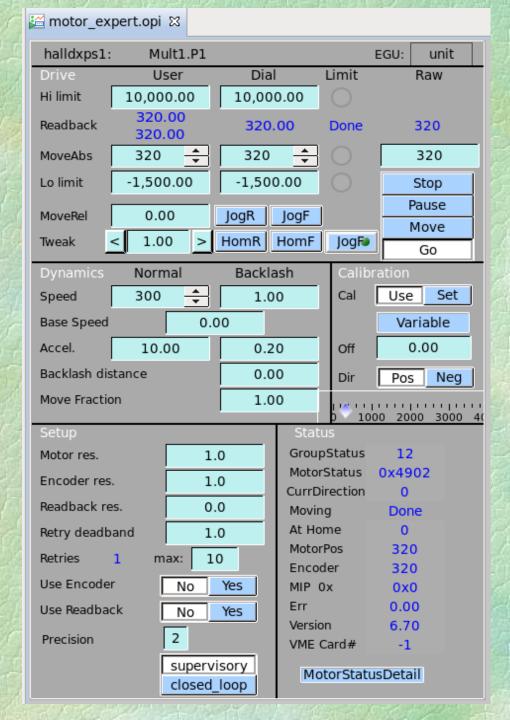
XPS-C8


SST55DC020

Stage for microscope beam test

Configuration

- XPS-C8 name: halldxps1.jlab.org (IP: 129.57.37.26)
- Positioner name: Mult1.P1
- Motion Group: MultipleAxis group


The WEB interface provides access to basic group functions: initialization, homing, executing relative and absolute moves ...

EPICS (driver by Mark Rivers)

IOC using the "motor" record

GUI using CSS

Test Results

- Movements of stage. OK
- Limit switches. When a limit switch is detected an emergency brake and the group goes in NOT_INITIALIZED status.
- Homing
 - Current Position As Home. OK
 - Low/High Switch As Home. OK
 - · Home Switch As Home, Problem.

Home searching direction: from high position to low

With Encoder it should work

We used **LowSwitchAsHome**

Output logic pulses during the execution of the trajectory

- Distance spaced trigger output pulses with Encoder

Time spaced trigger output pulses

First output pulse is generated when the positioner enters the defined position window. A new pulse is generated at every position/time step until the stage exits the window.

Trigger output on trajectories

Output of pulses at constant time (100 µs) intervals on a PVT trajectory

Trajectory Scanning

The XPS supports 3 different types of trajectories

- The line-arc trajectory: for positioners in XY groups
 - Trajectory defined by a number of straight and curved segments
- The spline trajectory: for positioners in XYZ groups
 - 3rd order polynomial curve
- The PVT- trajectory (Position, Velosity, Time)
 - Each trajectory element is defined by the move time, the end position, and end speed for each positioner
 - No limit to the trajectory elements
 - Available with MultipleAxes groups

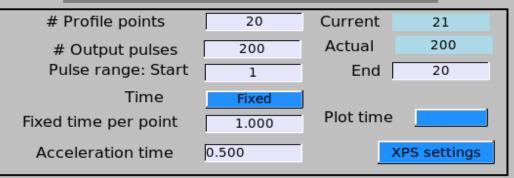
PVT- trajectory scanning*

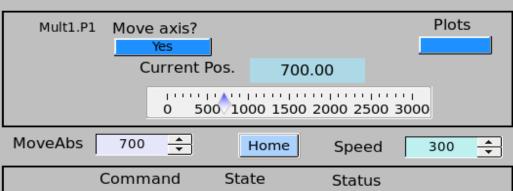
Mark Rivers developed a **new**EPICS **driver** for support of
trajectory scanning

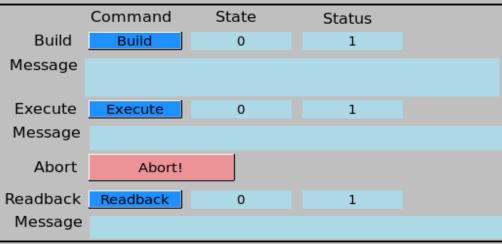
This GUI provides

Definition

Building


Scanning


of trajectory and


Readback

the actual positions when pulse was output

TRAJECTORY TEST

Testing is in progress...

THANK YOU