



# Questions:

- Can we use FCAL to detect charged pions with reliable efficiency?
- How big do our detectors need to be to detect muons (pions)?





### **Muon identification**

 $MUON = TOF \cdot (FCAL + MWPC_1) \cdot MWPC_2$ 

Efficiency for single track identification = 99.8%

Efficiency for identifying one or both tracks as a muon = 100.0%

## Pion identification:

 $PION = TOF \cdot (FCAL + MWPC_1) \cdot \overline{MWPC_2}$ 

Efficiency for single track identification = 1 - .01 = 99%

Efficiency for identifying both tracks as a pion = 98%

#### **Event identification:**

Pion event =  $PION_1 \cdot PION_2$ 

Muon event =  $MUON_1 \cdot PION_2 + PION_1 \cdot MUON_2 + MUON_1 \cdot MUON_2$ 

# Detect only the low angle muon





# Muon rejection:

$$MUON = TOF \cdot (FCAL + MWPC_1) \cdot MWPC_2$$

Efficiency for single track identification = 99.8%, 2 parts in 1000

## Pion identification:

$$PION = TOF \cdot (FCAL + MWPC_1) \cdot \overline{MWPC_2}$$

Efficiency for single track identification = 1 - .01 = 99%

### **Event identification:**

Pion event = NO TRACK + PION

Muon event = MUON

- 1. Revisiting the physics motivation in the LOI: Rory
- 2. Comparison of Compass measurement with Hall D: Rory
- 3. Acceptance, resolution, trigger and data rates: David
- Statistical and systematic errors, and projected sensitivity to alpha-beta: Rory, David, Elton
- 5. Muon pair backgrounds: Rory
- 6. Muon counters: Rory, Elton
- 7. Primakoff pi0 calibration analysis: Sasha
- 8. Putting the Latex document together: David?



Depth (nuclear interaction lengths) Figure 28.23: Mean profiles of  $\pi^+$  (mostly) induced cascades in the CDHS neutrino detector [143]. See full-color version on color pages at end of book.