SiPM: Development and Applications

P.Pakhlov (ITEP)

p

b

а

SiPM characteristics: general

- Matrix of independent pixels arranged on a common subtrate
- Each pixel operates in a selfquenching Geiger mode
- Each pixel produces a standard response independent on number of incident photons (arrived within quenching time)
- One pixel logical signal: 0 or 1
- SiPM at whole integrates over all pixels: SiPM response = number of fired pixels
- Dynamic range ~ number of pixels

<u>Geometry</u>

- \bullet Each pixel has a size 20-30 μ
- 500-4000 pixels/mm²

 Macroscopic unit ~ 1-3 mm
 (0.5mm and 5mm units have been also produced recently)

Each pixel works as a Geiger counter with charge $Q=\Delta VC$, $C\sim 50 \text{fmF}$; $Q\sim 3\times 50 \text{ fmC} = 150 \text{fmC} = 10^6 \text{ e} - \text{comparable to vacuum phototubes}$; much higher than avalanche photo-diods.

Gain increases linearly with overvoltage!
(APD has exponentional behaviour)
Optimal overvoltage is compromise with increased crosstalk (resulting in increased noise rate)

Timing characteristics

Si^{*} Resistor Al - conductor

- Short Geiger discharge development < 500 ps
- Discharge is guenched by current limiting with polysilicon resistor in each pixel I<10µA

 Pixel recovery time ~ $C_{\text{pixel}}R_{\text{pixel}}=100-500$ ns

Photon Detection Efficiency (PDE)

- Quantum efficiency is high ~ >80% for optical photons like other Si photodetectors
- Geometrical unefficiency is due to restricted sensitive area: eff ~30-50% depending on sensitive are/total area
- Probability to initiate Geiger discharge ~ 60%
- Finite recovery time for pixels ⇒ dead time depends on internal noise rate and photon occupancies

Spectral behaviour

 Photon absorbtion length in Si (~1µ) depends on wavelength
 The maximum efficiency can be

efficiency can be tuned according to the task changing the width of depletion region (from green to red)

Dynamic range

ITEP test procedure

Distributions for tested SiPMs

- Check the linearity of the SiPM response
- Use light collected from scintillator and study SiPM response vs number of incident MIPs
- Non-linearity at large N because of saturation due to finite number of pixels

Single pixel dark rate

 Electronic noise is small <10% of a single pixel standard signal -> results only on smearing of the standard signal
 Thermal creation of

 Thermal creation of carriers in the sensitive volume results in standard pulses

Typical one pixel dark rate ~ 1-2 MHz/mm² at room temperature

200 Hz/mm² at T=100K

Internal cross-talk

- Single pixel noise rate is huge ⇒ restrict the SiPM application for small light yields (at least at room temperature)
- The probability of N pixel RANDOM noise coincidence within integration time (typically 100 ns) is ~(100)^N times smaller

• BUT! Cross-talk violates the pixel independence:

- Optical cross-talk: photons created in Geiger discharge (10⁻⁵/e) can propagate to neighboring pixel
- Electrical pixel-to-pixel decoupling (boundary between pixels and independent quenching resistors) seems to provide electrical pixels independence.
- Cross-talk increases the multypixel firing probabilities

Internal cross-talk

1p.e. noise rate ~2MHz. threshold 3.5p.e. ~10kHz threshold 6p.e. ~1kHz

Internal cross-talk

The larger distance between pixel - the smaller cross-talk, but also smaller PDE

Cross-talk protection

Under investigation at ITEP now:

electrons protons neutrons gammas Irradiation with 200 MeV protons IRRA DIATION WITH SR-DO BOURCE BIPM current, JA 08 kRad Dose rate 13.5 Rad/min Irradiation rate 10 Rad/s 7 2.25 2 E 135 ഹ 1.5 SiPM current without Sr90 1.25 з Irradiation rate 0.05 Rad/s 1 2 2.9 kRad 0.7 5 0.5 20 25 30 10 210 8 00 910 Time , hours Protos dose, Rad CURRNOOSENT

Very preliminary

SiPM's characteristics without irradiation and after 900 rad proton 200 MeV

Very preliminary

SiPM single pixel spectra and MIP registration without irradiation and after 900 rad proton 200 MeV

- Radiation increases a number of defects around the sensitive area ⇒ The noise rate increases; efficiency becomes smaller due to larger dead time; electronic noise also increased and smear the single pixel signal
- All previous tests on radiation hardness were done with electron or gamma beams.
- Very preliminary conclusion:
 - ~1kRad dose (proton or neutrons) results in ~10 times higher dark current and single pixel noise rate ; PED affected just slightly

Equivalent electron dose is much higher

Please note that we worked with fast irradiation!
 Slow irradiation should be more safe for SiPM

Scintillator + Wavelength shifter + SiPM

Scintillator based muon systems

MIP Landau distribution starts above 10 fired pixels! (WLS fiber is not glued to strip)

8m² ALICE TOF Cosmic Test System is being built at ITEP

- ·dense packing ensures the absence of 'dead' zones
- \cdot intrinsic noise of a single cell ~ 0.01 Hz
- rate capability up to ~ 10KHz/cm²
- time resolution ~ 1.2 ns

CALICE Collaboration: Scintillator tile analog or semidigital HCAL

TOF with SiPM (MEPhI)

SiPM 3×3 mm² attached directly to BICRON - 418 scintillator 3×3×40 mm³ Signal is readout directly from SiPM w/o preamp and shaper!

Producers

- In Russia SiPM are produced by three independent (and competing) groups: MEPhI (B.Dolgoshein), CPTA Moscow (V.Golovin) and Dubna (Z.Sadygov)
- Similar performance has been reached.
- No real mass production yet, each of the producers is has built ~10000 pieces so far
- Many R&D for future detectors including LHC and ILC use SiPM from all three producers.
- Now developed at Hamamatsu

<u>Summary</u>

- Many real advantages of SiPM (in addition to discussed above):
 - Compactness
 - Insensitivity to Magnetic fields
 - Low operating voltage, low power consumption
 - Low charge particle sensitivity
 - Long term stability (but further study required)
- But there are some critical points:
 - Radiation hardness is low
 - Large noise restricts the application with low light yield
 - No real detector based on SiPM built sofar