FastDIRC Status Report

Yunjie Yang

DIRC workfest April 21, 2020

Outline

- A proper (re-)introduction to FastDIRC
- Current status: reconstruction and observable studies
- Moving forward

Outline

- A proper (re-)introduction to FastDIRC
- Current status: reconstruction and observable studies
- Moving forward

The many meanings of "FastDIRC"

Depending on the context, the term "FastDIRC" can refer to:

- A reconstruction philosophy/approach
- A way of doing fast photon generation & propagation
- A specific implementation, i.e. a code repo on GitHub, of this reconstruction approach

Some charged track hits a DIRC bar

track's $\overrightarrow{p}, \overrightarrow{x}, t$ extrapolated

A "black box" that we try to model as best as we can: geometry, photon generation and propagation

O(50) observed PMT hits

each hit: PMT channel and time

FastDIRC reconstruction philosophy

Given the O(50) observed hits and the O(1M) support points under each hypothesis, how likely do the observed hits come from each hypothesis?

FastDIRC reconstruction philosophy: a 3D-PDF approach

Answer: Hypothesis testing.

Compute the likelihood under each hypothesis, and form delta loglikelihoods

How to compute the likelihood under each hypothesis?

Pseudocode*:

likelihood = 1for every observed hit O_i do for every support point S_i do $r_{i,j}^2 = \frac{(x_{O_i} - x_{S_j})^2}{s_x^2} + \frac{(y_{O_i} - y_{S_j})^2}{s_x^2} + \frac{(t_{O_i} - t_{S_j})^2}{s_t^2}$ likelihood *= exp $\left(-\frac{r_{i,j}^2}{s_i^2}\right)$ end for end for

*In the real code, cut-offs, logs and additions are used in intermediate steps to make computation tractable.

FastDIRC reconstruction philosophy: a 3D-PDF approach

$$r_{i,j}^2 = \frac{(x_{O_i} - x_{S_j})^2}{s_x^2} + \frac{(y_{O_i} - y_{S_j})^2}{s_y^2} + \frac{(t_{O_i} - t_{S_j})^2}{s_t^2}$$

likelihood *= exp $\left(-\frac{r_{i,j}^2}{s_b^2}\right)$

- s_x , s_y , s_t , s_b are simply free parameters that represent some sort of scaling and they do *not* correspond to resolutions on those quantities
- This is simply *one* way of computing likelihoods from the given support points and observed hits, i.e. different kernels can be used
- At the present stage, it's likely more productive to focus on the question of *whether the support points represent the 3 dimensional probability density function from which the observed points are drawn*

How do you obtain the O(1M) support points per charged track?

- Monte Carlo approach, i.e. Geant
 - pros: reasonably model all the effects that you put in
 - cons: slow, cannot do this for every track naive implementation would render this reconstruction not viable

Analytical approach

- pros: fast enough to make this reconstruction approach feasible
- cons: cannot model everything could miss subtle effects

FastDIRC simulation: a fast analytical ray-tracing modeling

- Generation: only generate those that will be detected
 - Sample a wavelength spectrum: intrinsic $1/\lambda^2$, materials' λ dependence, PMT Q.E. etc.
 - Determine the index of refraction: $n(\lambda)$
 - Throw the photons around the Cherenkov cone
- Propagation: purely geometrical
 - A reflection: e.g. dirVec_x = -dirVec_x
 - Reflections are perfect
 - Gaussian smearing can be added

FastDIRC simulation: a fast analytical ray-tracing modeling

- The modeling of generation+propagation is certainly not comprehensive
- It can serve as an independent way of checking data, e.g. photon yield, timing
- It *enables* the 3D-PDF reconstruction approach, but in principle it is also *independent* of the reconstruction approach used

Key questions I am focusing on:

- The ability to quickly simulate a large number of potential PMT hits should be a powerful tool at our disposal. How can we make the best use of it?
- The correct modeling of the p.d.f that the observed hits are drawn from is critical. How can we ensure that?

Outline

- A proper (re-)introduction to FastDIRC
- Current status: reconstruction and observable studies
- Moving forward

To convert from a Δ LL distribution into an equivalent angular resolution:

- From Δ LL, construct the ROC curve and compute the AUC
- In θ_C space, we know the theoretical $\Delta \theta_C$ for this momentum (~11.5 mrad in this case)
- Assume both the pion and kaon θ_C are Gaussian-distributed and the single track resolution σ_{θ_c} is the same for both, numerically compute what σ_{θ_c} value would produce the same AUC

FastDIRC current status

- Adapted the original FastDIRC code with the as-built nominal geometry
- Functional as an alternative reconstruction method
- Achieved π/K separation (~3σ at 3 GeV) comparable with the withoutany-correction geometrical reconstruction
- Experimented with some ideas:
 - Attempted at alignment with geometry parameters: looked at different figures-of-merit, tried a few naive overall shifts
 - Construction of low-level observables: as an independent check of data quality (during commissioning and beyond), and to identify where the inner workings of the modeling need to be improved

Input: track kinematics, mass hypothesis

O(1M) support points in (x, y, t) space

Model: geometry + propagation

red and blue bands: support points from two mass hypos

• observed hit

Idea: for each observed hit, look at its "neighbors" in this 3D space, and try to construct observables

For each hit, define its *neighborhood* as, e.g. within ± 5 ns and ± 8.5 mm:

- Yes/No counting <=> photon yield:
 - If there is at least one (no) support points in the neighborhood, call it a signal (noise) hit
- Distance measure <=> Delta observables:
 - For all support points in the neighborhood, construct $\Delta x = x_0 x_{S,i}$, $\Delta y = y_0 y_{S,i}$, $\Delta t = t_0 t_{S,i}$

=> Showed interesting/promising signs, but a lot to understand

Example: Photon Yield

Similar behavior, but with an independent approach

Example: Δt

path length dependence?

This is just the beginning of looking at real data with this reconstruction approach. There is **A LOT** to understand:

- What does it mean to apply "corrections" in this context? (maybe this is not the right question to ask)
- How to factorize the various effects at play? What observables can we construct to do that?
- Fast simulation of support points should be a powerful tool, but how can we best use it?

Many aspects of the "code commissioning" still needed:

Geometry manipulation works as intended

. . .

• Cherenkov wavelength spectrum represents our current knowledge

Outline

- A proper (re-)introduction to FastDIRC
- Current status: reconstruction and observable studies
- Moving forward

Future Plan

I need to graduate at some point... but before that, I hope to

- integrate FastDIRC into GlueX software
- continue exploring different ideas

Summary

- FastDIRC is still useful and relevant in the era of data
- Its potential is not well unexplored
- It is just the beginning and I hope the story continues